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Abstract. It is shown that a continuous positive linear functional on a commutative nuclear
*-algebra has an integral decomposition into characters if and only if the functional is strongly positive,
i.e. positive on all positive polynomials. When applied to the symmetric tensor algebra over a nuclear
test function space this gives a necessary and sufficient condition for the Schwinger functions of Eucli-
dean quantum field theory to be the moments of a continuous cylinder measure on the dual space.
Another application is to the problem of decomposing a Wightman functional into states having the
cluster property.

1. Introduction

Whereas the extremal states of an abelian *-algebra of bounded operators on
Hubert space are at the same time the characters of the algebra, this is no longer
true for algebras of unbounded operators1. In a previous article [2] an integral
decomposition theory associated with the weak commutant of families of un-
bounded operators was used to obtain an extremal decomposition of states on
nuclear *-algebras. The present paper is concerned with decompositions into
characters in the commutative case. It is shown that such a decomposition is
possible if and only if the state, satisfies a positivity condition which is well known
from the classical moment problem over finite dimensional spaces [3,4]. This
result can be applied to Euclidean quantum field theory where the sequence of
Schwinger distributions defines by assumption a positive linear functional on the
symmetric tensor algebra over some nuclear space of test functions. The condition
tells also when a Wightman functional is an integral over states having the cluster
property. That this is not always the case was shown in [2].

The infinite dimensional moment problem has been treated by several authors
under conditions which at the same time guarantee the uniqueness of the solution,
cf. e.g. [5] and [1]. Our method is based on the extension theory in [2] which,
however, has to be modified slightly to fit our purpose. These changes are fairly
straightforward so we can in most cases refer to [2] for the proofs. This method,
which might appear somewhat indirect if one is only aiming at a solution of the
moment problem (i.e. our Theorem 4.3)2, has some advantages: It makes explicit
the intimate connection of the solution with the weak commutant of the operators

1 See e.g. [1], Theorem 5.5.
2 After this research was completed a more direct proof of Theorem 4.3 was found by G. C.

Hegerfeldt. A closely related result has also been obtained by M. Dubois-Violette (private commu-
nication).


