Commun. math. Phys. 42, 281—305 (1975) © by Springer-Verlag 1975

Axioms for Euclidean Green's Functions II

Konrad Osterwalder*

Jefferson Laboratory of Physics, Harvard University, Cambridge, Massachusetts, USA

Robert Schrader

Institut für Theoretische Physik, Freie Universität Berlin, Berlin

with an Appendix by Stephen Summers

Received December 3, 1974; in revised form January 16, 1975

Abstract. We give new (necessary and) sufficient conditions for Euclidean Green's functions to have analytic continuations to a relativistic field theory. These results extend and correct a previous paper.

Table of Contents

I. Introduction	281
II. Notations	283
III. The Equivalence Theorem Revisited	285
IV. The Main Result: Another Reconstruction Theorem	287
IV.1 Linear Growth Condition and Statement of Results	287
IV.2 Proof of Theorem $E' \rightarrow R'$	288
V. The Analytic Continuation	289
V.1 Real Analyticity	291
V.2 Towards the Real World	293
VI. The Temperedness Estimate	297
VI.1 From Distributions to Functions	297
VI.2 Continuing the Estimates	301
VII. Appendix	303
References	305

I. Introduction

The passage to purely imaginary times has proven to be an extremely powerful tool both for the construction and for the discussion of relativistic quantum field theoretical models¹. Obviously for such a procedure to make sense it is important to know how to go back again to real time.

In a previous paper "Axioms for Euclidean Green's functions" [12] (henceforth quoted as OS I) we claimed to have found necessary and sufficient conditions under which Euclidean Green's functions have analytic continuations whose boundary values define a unique set of Wightman distributions. These conditions

^{*} Supported in part by the National Science Foundation under Grant MPS73-05037 A01.

Alfred P. Sloan Foundation Fellow.

¹ For verification of this assertion the reader should consult the 1973 Erice Lectures on Constructive Quantum Field Theory [19], where also references and historical accounts can be found.