Unbounded Derivations of C*-Algebras

Ola Bratteli*

Centre de Physique Théorique, CNRS, Marseille, France

Derek W. Robinson

Université d'Aix-Marseille II, Marseille-Luminy, and Centre de Physique Théorique, CNRS, Marseille, France

Received December 25, 1974

Abstract. We study unbounded derivations of C^* -algebras and characterize those which generate one-parameter groups of automorphisms. We also develop a functional calculus for the domains of closed derivations and develop criteria for closeability. Some special C^* -algebras are considered $\mathfrak{BC}(\mathfrak{H})$, $\mathfrak{B}(\mathfrak{H})$, UHF algebras, and in this last context we prove the existence of non-closeable derivations.

I. Introduction

A derivation δ of a C^* -algebra $\mathfrak A$ is a linear mapping from a dense * subalgebra $D(\delta) \subset \mathfrak A$ to a subspace $R(\delta) \subset \mathfrak A$ satisfying the two properties

1.
$$\delta(AB) = \delta(A)B + A\delta(B)$$
, $A, B \in D(\delta)$,

2.
$$\delta(A^*) = -\delta(A)^*$$
, $A \in D(\delta)$.

 $D(\delta)$ is the domain of δ and $R(\delta)$ the range.

If $\mathfrak A$ contains an identity element $\mathbb 1$ we will always assume $\mathbb 1 \in D(\delta)$ and then $\mathbb 1^2 = \mathbb 1$ etc. immediately implies that $\delta(\mathbb 1) = 0$.

It is known that if a derivation is everywhere defined, $D(\delta) = \mathfrak{A}$, then it is bounded (for this and other results on bounded derivations see, for example, [1], Chapter 4). We will be interested in unbounded derivations. Some results are already given in [2, 3].

II. General Algebras

The principal interest of unbounded derivations is that they arise as infinitesimal generators of strongly continuous one-parameter groups of *-automorphisms of \mathfrak{A} .

Let $A \in \mathfrak{A} \mapsto \tau_{t}(A) \in \mathfrak{A}$ be a one-parameter group of *-automorphisms of the C^* algebra \mathfrak{A} satisfying

$$\lim_{t\to 0} \|\tau_t(A) - A\| = 0, \quad A \in \mathfrak{A}$$

and define

$$i\delta(A) = \lim_{t\to 0} (\tau_t(A) - A)/t$$

for the set $D(\delta)$ of $A \in \mathfrak{A}$ such that the limit exists. It is easily checked that δ is a derivation of \mathfrak{A} and of course it corresponds to the infinitesimal generator of τ .

^{*} Supported by the Norwegian Research Council for Science and Humanities.