## Statistical Mechanics of Quantum Lattice Systems without Translation Invariance

## H. Roos

Institut für Theoretische Physik, Universität Göttingen, Göttingen, Federal Republic of Germany

Received December 10, 1974

**Abstract.** The well-known results concerning the equilibrium of a translation invariant quantum lattice system – existence of the pressure and of the time automorphisms, variational principle for the pressure – are generalized to a large class of quantum lattice systems with potentials not exhibiting covariance under the group of lattice translations.

## I. Introduction

It is well known [1] that for a quantum lattice system with a suitable interaction  $\phi(X)$ ,  $X \subset \mathbb{Z}^v$ , the pressure  $P(\phi)$  and the group of time automorphisms  $\tau_t(\phi)$  exist in the thermodynamic limit. In proving these results one makes repeatedly use of the translation covariance of the interaction:

$$\phi(X+a) = \tau_a \phi(X), \tag{1}$$

where X+a,  $a\in \mathbb{Z}^{\nu}$ , denotes the set obtained by translation of X, and  $\tau_a$  is the canonical isomorphism of the bounded operators on  $\mathscr{H}_X$  onto the bounded operators on  $\mathscr{H}_{X+a}$ ,  $\tau_a\colon B(\mathscr{H}_X)\to B(\mathscr{H}_{X+a})$ . (Our notation is as usual: to each site

x of the  $\nu$ -dimensional lattice  $\mathbb{Z}^{\nu}$  we attribute a copy  $\mathscr{H}_x$  of a finite dimensional Hilbert space  $\mathscr{H}$ , and  $\mathscr{H}_X = \bigotimes_{x \in X} \mathscr{H}_x$ . But there are systems for which (1) does not

hold: consider, for instance, two-component crystals, crystals with impurities, or systems with inhomogeneous external fields, or even stationary non-equilibrium systems. We shall concentrate here on systems in equilibrium. It will turn out that, due to the fact that our observable algebra is assumed to be quasi-local,  $\tau_{t}(\phi)$  can be defined for all interactions satisfying a temperedness condition which is an obvious generalization of the usual one: There is a norm  $\|\phi\|_f$ ,  $f(\xi) = e^{\alpha \xi}$ , which has to be finite; if  $\phi$  satisfies (1),  $\||\phi|\|_f$  conincides with the usual norm  $\|\phi\|_f$ which is assumed to be finite in [2], where the existence of  $\tau_i(\phi)$  is demonstrated for translation covariant potentials. Furthermore, one can show that  $\tau_i(\phi)$  depends continuously on  $\phi$ . These results are contained in Section III. (Precise definitions and notations will be found in the following section.) The existence of the pressure is ensured by a weak form of temperedness, but, in addition, Eq. (1) has to be replaced by a condition which guarantees the existence of a mean of the "local" pressures  $P_{A_0+x}(\phi)$  for fixed  $\Lambda_0$ . We can deal either with "asymptotically translation covariant potentials" describing a lattice with a locally disturbed potential, or, what is more interesting, treat potentials describing "randomly scattered impurities" in addition to the regular lattice interaction. This class of potentials will turn out to be a fairly large one. This is done in Sections IV-VI.