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Abstract. The well-known results concerning the equilibrium of a translation invariant quantum
lattice system - existence of the pressure and of the time automorphisms, variational principle for the
pressure - are generalized to a large class of quantum lattice systems with potentials not exhibiting
covariance under the group of lattice translations.

I. Introduction

It is well known [1] that for a quantum lattice system with a suitable inter-
action φ(X), XcΈv, the pressure P(φ) and the group of time automorphisms
τt(φ) exist in the thermodynamic limit. In proving these results one makes re-
peatedly use of the translation covariance of the interaction:

(1)

where X + α, aeΈv, denotes the set obtained by translation of X, and τa is the
canonical isomorphism of the bounded operators on Jt?x onto the bounded
operators on ^ x + a, τa: B(J4?x)^>B(Jtf?

x + a). /Our notation is as usual: to each site

x of the v-dimensional lattice Έv we attribute a copy J^x of a finite dimensional
Hubert space JίC, and Jfx= (X)«#U But there are systems for which (1) does not

xeX I

hold: consider, for instance, two-component crystals, crystals with impurities, or
systems with inhomogeneous external fields, or even stationary non-equilibrium
systems. We shall concentrate here on systems in equilibrium. It will turn out
that, due to the fact that our observable algebra is assumed to be quasi-local,
τt(φ) can be defined for all interactions satisfying a temperedness condition which
is an obvious generalization of the usual one: There is a norm \\\φ\\\f, f(ξ) = eocξ,
which has to be finite; iϊφ satisfies (1), \\\φ\\\f conincides with the usual norm \\φ\\f

which is assumed to be finite in [2], where the existence of τt(φ) is demonstrated
for translation covariant potentials. Furthermore, one can show that τt(φ) de-
pends continuously on φ. These results are contained in Section III. (Precise
definitions and notations will be found in the following section.) The existence of
the pressure is ensured by a weak form of temperedness, but, in addition, Eq. (1)
has to be replaced by a condition which guarantees the existence of a mean of the
"local" pressures PΛo+x(φ) for fixed Λo. We can deal either with "asymptotically
translation covariant potentials" describing a lattice with a locally disturbed
potential, or, what is more interesting, treat potentials describing "randomly
scattered impurities" in addition to the regular lattice interaction. This class of
potentials will turn out to be a fairly large one. This is done in Sections IV-VI.


