Commun. math. Phys. 41, 301—307 (1975) © by Springer-Verlag 1975

Note

Limit Theorems for Multidimensional Markov Processes

G. Gallavotti*

Instituut voor Theoretische Fysica, Katholieke Universiteit Nijmegen, Nijmegen, The Netherlands

G. Jona-Lasinio

Istituto di Fisica dell'Università, Gruppo GNSM, Padova, Italy

Received October 21, 1974

Abstract. An informal exposition of some recent results and conjectures.

A multidimensional Markov process (mdmp) is a dynamical system (K, m, T) where:

- K space of the sequences of symbols from a finite alphabet I = (a, b, ..., z) indexed by the elements $\eta \in Z^d \equiv$ lattice formed by the *d*-ples of integers. K is regarded as $K = \prod_{\eta \in Z^d} I$ i.e. as a product space of copies of I; furthermore I is topologized by the discrete topology and K by the product topology.
- T is the translation group acting, in the natural way, on K: if $\underline{\sigma} \in K$, $\underline{\sigma} = \{\sigma_{\xi}\}_{\xi \in \mathbb{Z}^d}$ then $T_{\eta}\underline{\sigma} = \underline{\sigma}' = \{\sigma_{\xi+\eta}\}_{\xi \in \mathbb{Z}^d}$, if $\eta \in \mathbb{Z}^d$.
- m is a regular complete probability measure on K whose σ -field contains all the open sets of K. Furthermore m has the "Markov property".

The Markov property can be easily expressed as a requirement on the conditional distributions associated with finite sets $\Lambda \subset Z^d$. Let $\underline{\sigma}_A = \{\sigma_{\xi}\}_{\xi \in A}$ $\underline{\sigma}' = \{\sigma_{\xi}\}_{\xi \in Z^d \setminus A}$; then, with obvious notations, $\underline{\sigma}_A \cup \underline{\sigma}' \in K$ and we can define $m_A(\underline{\sigma}_A/\underline{\sigma}')$ as the conditional probability that a configuration $\underline{\sigma} \in K$ coincides with $\underline{\sigma}_A$ inside Λ once it is known that, outside $\Lambda, \underline{\sigma}$, and $\underline{\sigma}'$ coincide. The Markov property is then the following [5, 17]:

mp for m-almost all $\underline{\sigma}_A \cup \underline{\sigma}'$ in K the functions $m_A(\underline{\sigma}_A/\underline{\sigma}')$ depend on $\underline{\sigma}'$ only through the values σ'_{ξ} with $\xi \in \partial A \equiv \{$ set of lattice points not in A but located at unit distance from $A\}$. Here A is an arbitrary finite subset of Z^d . Furthermore, $m_A(\underline{\sigma}_A/\underline{\sigma}') > 0$ m-a.e. $\forall A \in Z^d$.

In the following we shall assume, for simplicity, that *I* is a two symbol alphabet $I = \{-1, +1\}$.

The following very interesting structure (and existence) theorem for mdmp holds: [5, 10, 15, 17].

Theorem. All ergodic mdmp in d-dimensions can be obtained as follows:

i) choose d + 1 real numbers $\beta_1, \ldots, \beta_d, h$;

ii) choose $\underline{\sigma}^0 \in K$;

^{*} On leave of absence from Istituto di Fisica Teorica, Università di Napoli, Napoli, Italia.