Note

Limit Theorems for Multidimensional Markov Processes

G. Gallavotti^
Instituut voor Theoretische Fysica, Katholieke Universiteit Nijmegen, Nijmegen, The Netherlands
G. Jona-Lasinio
Istituto di Fisica dell’Università, Gruppo GNSM, Padova, Italy

Received October 21, 1974

Abstract

An informal exposition of some recent results and conjectures.

A multidimensional Markov process (mdmp) is a dynamical system (K, m, T) where:
K space of the sequences of symbols from a finite alphabet $I=(a, b, \ldots z)$ indexed by the elements $\eta \in Z^{d} \equiv$ lattice formed by the d-ples of integers. K is regarded as $K=\Pi_{\eta \in Z^{d}} I$ i.e. as a product space of copies of I; furthermore I is topologized by the discrete topology and K by the product topology.
T is the translation group acting, in the natural way, on K : if $\underline{\sigma} \in K, \underline{\sigma}=\left\{\sigma_{\xi}\right\}_{\xi \in Z^{d}}$ then $T_{\eta} \underline{\sigma}=\underline{\sigma}^{\prime}=\left\{\sigma_{\xi+\eta}\right\}_{\xi \in Z^{d}}$, if $\eta \in Z^{d}$.
m is a regular complete probability measure on K whose σ-field contains all the open sets of K. Furthermore m has the "Markov property".
The Markov property can be easily expressed as a requirement on the conditional distributions associated with finite sets $\Lambda \subset Z^{d}$. Let $\underline{\sigma}_{A}=\left\{\sigma_{\xi}\right\}_{\xi \in \Lambda}$ $\underline{\sigma}^{\prime}=\left\{\sigma_{\xi}\right\}_{\xi \in \mathcal{Z}^{d} \backslash \Lambda}$; then, with obvious notations, $\underline{\sigma}_{A} \cup \underline{\sigma}^{\prime} \in K$ and we can define $m_{A}\left(\underline{\sigma}_{A} / \underline{\underline{\prime}}^{\prime}\right)$ as the conditional probability that a configuration $\underline{\sigma} \in K$ coincides with $\underline{\sigma}_{A}$ inside Λ once it is known that, outside $\Lambda, \underline{\sigma}$, and $\underline{\sigma}^{\prime}$ coincide. The Markov property is then the following $[5,17]$:
$m p$ for m-almost all $\underline{\sigma}_{A} \cup \underline{\sigma}^{\prime}$ in K the functions $m_{A}\left(\underline{\sigma}_{A} / \underline{\sigma}^{\prime}\right)$ depend on $\underline{\sigma}^{\prime}$ only through the values σ_{ξ}^{\prime} with $\xi \in \partial \Lambda \equiv\{$ set of lattice points not in Λ but located at unit distance from $\Lambda\}$. Here Λ is an arbitrary finite subset of Z^{d}. Furthermore, $m_{A}\left(\underline{\sigma}_{A} / \underline{\sigma}^{\prime}\right)>0 m$-a.e. $\forall \Lambda \subset Z^{d}$.
In the following we shall assume, for simplicity, that I is a two symbol alphabet $I=\{-1,+1\}$.

The following very interesting structure (and existence) theorem for mdmp holds: $[5,10,15,17]$.

Theorem. All ergodic mdmp in d-dimensions can be obtained as follows:
i) choose $d+1$ real numbers $\beta_{1}, \ldots, \beta_{d}, h$;
ii) choose $\underline{\sigma}^{0} \in K$;

[^0]
[^0]: * On leave of absence from Istituto di Fisica Teorica, Università di Napoli, Napoli, Italia.

