Commun. math. Phys. 41, 19–32 (1975) © by Springer-Verlag 1975

Correlation Inequalities and the Mass Gap in $P(\phi)_2$ III. Mass Gap for a Class of Strongly Coupled Theories

with Nonzero External Field

Francesco Guerra

Institute of Physics, University of Salerno, Salerno, Italy

Lon Rosen

Department of Mathematics, University of Toronto, Toronto, Canada

Barry Simon*

Departments of Mathematics and Physics, Princeton University, Princeton, USA

Received September 20, 1974

Abstract. We consider the infinite volume Dirichlet (or half-Dirichlet) $P(\phi)_2$ quantum field theory with $P(X) = aX^4 + bX^4 + bX^2 - \mu X (a > 0)$. If $\mu \neq 0$ there is a positive mass gap in the energy spectrum. If the gap vanishes as $\mu \rightarrow 0$, it goes to zero no faster than linearly yielding a bound on a critical exponent.

§ 1. Introduction

In this paper, we discuss various aspects of the $P(\phi)_2$ Euclidean field theory [28, 23]. In the statistical mechanical approach to these theories which we have advocated elsewhere [10] (see also our contributions to [28]), one of the subprograms concerns the use of Ising model techniques. These techniques are especially useful in the study of the $:a\phi^4 + b\phi^2 - \mu\phi:_2$ theory where both the lattice approximation [10] and classical Ising approximation [24] are available. In fact, in II of this series [21], we used these techniques to complete the proof of the Wightman axioms for these theories when $\mu \neq 0$. In essence, the result of that note was that 0 was a simple eigenvalue of the Hamiltonian in the infinite volume Dirichlet theory. Using very different techniques, based in part on the cluster expansion of [7, 8], Spencer [25] proved that the theories with $|\mu|$ large (and periodic B.C.) have a mass gap, i.e. that 0 is a simple, *isolated*, eigenvalue of the Hamiltonian. Our goal in this note is to extend this result to any $\mu \neq 0$.

As before, our proof is modelled on a result in the theory of Ising models, namely the recent work of Lebowitz and Penrose [14, 15] on clustering. They, in turn, rely on subharmonicity ideas first introduced by Penrose and Elvey [16]. In the present context, this basic idea of "superharmonic continuation" is very simple and beautiful: Let $m_l(\mu)$ be the mass gap for the (periodic) Hamiltonian on [-l/2, l/2] with interaction polynomial $P(X) = aX^4 = bX^2 - \mu X$. We show that $m_l(\mu)$ has a continuation to a *nonnegative superharmonic* function $M_l(\mu)$ in the region $\text{Re }\mu > 0$ where the Lee-Yang theorem of the classical Ising approximation applies [24]. Now for large real μ , Spencer [25] assures us that $M_l(\mu)$ is bounded

^{*} A Sloan Foundation Fellow; partially supported by USNSF under contract No. GP 39048.