On the Nonrelativistic Limit of the Dirac Theory

W. Hunziker

Institut für Theoretische Physik der ETH, Zürich, Switzerland

Received October 15, 1974

Abstract. The relation between a "nonrelativistic" Hamiltonian of the form $H^{\infty} = (A + B)^2 + C$ and a corresponding family of "Dirac-Hamiltonians" H(c) in the limit $c \to \infty$ is investigated. It is shown that the resolvent $(z - H(c))^{-1}$ and the relativistic perturbation of isolated eigenvalues of H^{∞} are analytic in 1/c for sufficiently large |c|.

1. Introduction

The Hamiltonian of a Dirac-electron of charge e = 1 and mass m = 1/2 may be written as

$$H(c) = c\alpha(\mathbf{p} - \mathbf{A}(\mathbf{x})) + \frac{1}{2}\beta c^2 + \varphi(\mathbf{x}), \qquad (1)$$

where p = -id/dx and with the 4 × 4-matrices

$$\boldsymbol{\alpha} = \begin{pmatrix} 0 & \boldsymbol{\sigma} \\ \boldsymbol{\sigma} & 0 \end{pmatrix}, \qquad \boldsymbol{\beta} = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & \mathbf{1} \end{pmatrix},$$

whose elements are the 2 × 2-matrices 1 and $\boldsymbol{\sigma} = (\sigma_1, \sigma_2, \sigma_3) =$ set of Pauli spinmatrices. $A(\mathbf{x})$ and $\varphi(\mathbf{x})$ are the potentials of the static electromagnetic field. The usual factor 1/c in front of $A(\mathbf{x})$ is omitted on purpose since it must be kept fixed in the nonrelativistic limit $c \rightarrow \infty$. H(c) acts on the Hilbertspace $C^4 \otimes L^2(\mathbb{R}^3)$ of square-integrable 4-component wave functions.

On a formal level, it is well understood that the nonrelativistic limit $c \rightarrow \infty$ is described by the Pauli-Hamiltonian

$$H^{\infty} = (\sigma (p - A(x))^2) + \varphi(x)$$
⁽²⁾

on the smaller Hilbertspace $C^2 \otimes L^2(\mathbb{R}^3)$, and there exists a sytematic scheme for obtaining corrections to H^{∞} in the form of a power series in 1/c [1]. However, these "relativistic perturbations" of H^{∞} are given by more and more singular operators which are by no means small with respect to H^{∞} . One might therefore suspect that perturbation expansions in powers of 1/c are at best asymptotic.

Nevertheless, Titchmarsh [2] has proved analyticity in 1/c of eigenvalues and eigenfunctions for the spherically symmetric case without magnetic field: $\varphi = \varphi(r), A = 0$; and Veselić [3] has extended this result to the case without spherical symmetry: $\varphi = \varphi(\mathbf{x}), A = 0$.

In this note we investigate the general case $A \neq 0$ which poses essentially new problems-already in the nonrelativistic limit. One of the points we wish to make is that it is profitable to treat a general Hamiltonian of type $H^{\infty} = (A + B)^2 + C$ as a nonrelativistic limit of a corresponding Dirac-Hamiltonian H(c).