Commun. math. Phys. 40, 147—151 (1975) © by Springer-Verlag 1975

Completely Positive Maps and Entropy Inequalities

Göran Lindblad

Department of Theoretical Physics, Royal Institute of Technology, Stockholm Sweden

Received May 15, 1974

Abstract. It is proved that the relative entropy for a quantum system is non-increasing under a trace-preserving completely positive map. The proof is based on the strong sub-additivity property of the quantum-mechanical entropy.

The object of this note is to prove that the relative entropy functional for a finite quantum system is nonincreasing under a trace-preserving completely positive map of the state space into itself. This theorem is a generalization of an earlier result for expectations [1] (since expectations are completely positive maps [2]) which is in its turn a generalization of a well-known theorem in information theory [3, 4]. The proof is based on the strong subadditivity property of the quantum-mechanical entropy which was derived recently by Lieb and Ruskai [5] from certain trace inequalities proved by Lieb [6] and, in an alternative way, by Epstein [7].

The physical interest of completely positive maps lies in the theory of measurements and the operational approach to quantum mechanics [8, 9]. We will give some simple arguments that the operations should be chosen to be completely positive.

Denote by $B(\mathcal{H})$ the bounded operators in a separable Hilbert space \mathcal{H} , by $T(\mathcal{H})$ the trace class operators in \mathcal{H} and by $T_+(\mathcal{H})$ the positive elements in $T(\mathcal{H})$. Furthermore, let \mathcal{M}_n be the algebra of $n \times n$ complex matrices.

Let $A, B \in T_+(\mathcal{H})$. Define the operator-valued entropy by $\hat{S}(A) = -A \ln A$.

Let $\lambda \in (0, 1)$ and define

$$\begin{split} \hat{S}_{\lambda}(A|B) &= \lambda^{-1} \left[\hat{S}(\lambda A + (1-\lambda)B) - \lambda \hat{S}(A) - (1-\lambda)\hat{S}(B) \right] \\ S_{\lambda}(A|B) &= \operatorname{Tr} \hat{S}_{\lambda}(A|B) \,. \end{split}$$

The relative entropy is defined by

$$S(A|B) = \lim_{\lambda \to 0} S_{\lambda}(A|B).$$

From Lemma 4 of [10] it follows that this definition is equivalent to that used in [1, 10].

We know that $\hat{S}_{\lambda}(A|B)$ is positive [10], hence the trace is well-defined, eventually infinite. When $\lambda \downarrow 0$, $\hat{S}_{\lambda}(A|B)$ is monotonously increasing,