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It was pointed out to me by Daniel Kastler that I was too careless
in the use of the strong-* topology in the proof of Theorem 2.3 in the
above paper [1]. As a result it is necessary to change the definition of
the spectrum of a state on a C* -algebra somewhat.

Definition ί. Let 91 be a C*-algebra and ρ a state of 91 with GNS
representation (πρ, xρ, 3Eρ). Then the spectrum of ρ, denoted by Spec(ρ)
is the set of real numbers u such that given ε > 0 there is i e π e ( 2 l ) "
for which ωXβ(A*A) = 1 such that

\u(πρ(B) Axρ, xQ) - (Aπρ(B) xQ9 xρ)\

for all B e 91.
In the previous definition we asserted that we could choose A e πρ(9I).
Let 9ΐρ denote the von Neumann algebra πρ(9I)" and Eρ the projection

[9ΐ'ρxρ], which is the support of ωx on 9ίρ. Let Δρ be the modular
operator of xρ relative to Eρ9lρEρ acting on EρXρ, and consider it as an
operator on 3£ρ by defining it to be 0 on (/ — Eρ) Xρ.

Definition 2. With the above notation we call ΔQ the modular operator
of the state ρ.

Remark 1. Spec(ρ) = Spec(ωxJ 5Rρ). Indeed, if u e Spec(ρ) and A e 5Rρ

satisfies the conditions in Definition 1 then for all B e πρ(2ϊ)

\u{AxQ9B*xQ)-(BxQ,A*xQ)\<ε\\BxQ\\.

Since πρ(9I) is strong-* dense in 5Rρ the same inequality holds for all
Be9lρ, and thus ue Spec(ωxJ9ίρ). The converse inclusion is trivial
since π ρ(2l)c9l ρ .

Theorem. Let ?l be a C*-algebra and ρ a state of 9Ϊ with modular
operator Δρ. Then Spec(ρ) = Spec(zlρ).


