Commun. math. Phys. 38, 341—343 (1974) © by Springer-Verlag 1974

A Correction to My Paper Spectra of States, and Asymptotically Abelian C*-Algebras

Commun. math. Phys. 28, 279–294 (1972)

Erling Størmer

Department of Mathematics, University of Oslo, Blindern, Oslo, Norway

Received May 25, 1974

It was pointed out to me by Daniel Kastler that I was too careless in the use of the strong-* topology in the proof of Theorem 2.3 in the above paper [1]. As a result it is necessary to change the definition of the spectrum of a state on a C^* -algebra somewhat.

Definition 1. Let \mathfrak{A} be a C*-algebra and ϱ a state of \mathfrak{A} with GNS representation $(\pi_{\varrho}, x_{\varrho}, \mathfrak{X}_{\varrho})$. Then the spectrum of ϱ , denoted by Spec (ϱ) is the set of real numbers u such that given $\varepsilon > 0$ there is $A \in \pi_{\varrho}(\mathfrak{A})''$ for which $\omega_{x_{\varrho}}(A^*A) = 1$ such that

$$|u(\pi_{o}(B) A x_{o}, x_{o}) - (A \pi_{o}(B) x_{o}, x_{o})| < \varepsilon \varrho (B^{*}B)^{1/2}$$

for all $B \in \mathfrak{A}$.

In the previous definition we asserted that we could choose $A \in \pi_{\rho}(\mathfrak{A})$.

Let \Re_{ϱ} denote the von Neumann algebra $\pi_{\varrho}(\mathfrak{A})''$ and E_{ϱ} the projection $[\Re'_{\varrho}x_{\varrho}]$, which is the support of $\omega_{x_{\varrho}}$ on \Re_{ϱ} . Let Δ_{ϱ} be the modular operator of x_{ϱ} relative to $E_{\varrho}\Re_{\varrho}E_{\varrho}$ acting on $E_{\varrho}\mathfrak{X}_{\varrho}$, and consider it as an operator on \mathfrak{X}_{ϱ} by defining it to be 0 on $(I - E_{\varrho})\mathfrak{X}_{\varrho}$.

Definition 2. With the above notation we call Δ_{ϱ} the modular operator of the state ϱ .

Remark 1. Spec(ϱ) = Spec($\omega_{x_{\varrho}} | \Re_{\varrho}$). Indeed, if $u \in \text{Spec}(\varrho)$ and $A \in \Re_{\varrho}$ satisfies the conditions in Definition 1 then for all $B \in \pi_{\varrho}(\mathfrak{A})$

$$|u(Ax_o, B^*x_o) - (Bx_o, A^*x_o)| < \varepsilon \|Bx_o\|.$$

Since $\pi_{\varrho}(\mathfrak{A})$ is strong-* dense in \mathfrak{R}_{ϱ} the same inequality holds for all $B \in \mathfrak{R}_{\varrho}$, and thus $u \in \operatorname{Spec}(\omega_{x_{\varrho}} | \mathfrak{R}_{\varrho})$. The converse inclusion is trivial since $\pi_{\varrho}(\mathfrak{A}) \subset \mathfrak{R}_{\varrho}$.

Theorem. Let \mathfrak{A} be a C*-algebra and ϱ a state of \mathfrak{A} with modular operator Δ_{ϱ} . Then Spec $(\varrho) = \text{Spec}(\Delta_{\varrho})$.