The Geometry of the (Modified) GHP-Formalism*

Jürgen Ehlers

Max-Planck-Institut für Physik und Astrophysik, München, Federal Republic of Germany

Received May 11, 1974

Let (L,N) be a pair of future oriented null direction fields in a temporally and spatially oriented spacetime (M,g_{ab}) with a spinor structure [1-4]. Then the collection of null-tetrads $\zeta=(l,n,m,\overline{m})$ (as defined in the preceding paper) with $l\in L$, $n\in N$ is a principal fibre bundle over M with structure group C (= multiplicative group of complex numbers), where, for $z\in C$,

$$\zeta' = \zeta z \text{ means } (l', n', m') = \left(|z|^2 l, |z|^{-2} n, \frac{z}{\overline{z}} m \right).$$
 (A.1)

Let B denote this bundle as well as its bundle space. B is a reduction of the bundle of oriented null tetrads over $M \cong M$ ($M \cong M$) or oriented orthonormal frames).

If $\psi: M \to B$ is a cross section and (x^a) a local coordinate system of M, then (x^a, w) is a local coordinate system of B where, for $x \in M$, $\zeta_x \in B$, $w \in C: \zeta_x = \psi_x w$. A complex valued 1-form $\overline{\omega}$ on B defines a connection on B if and only if it has the local representation

$$\overline{\omega} = \omega_a(x^b) \, dx^a + \frac{dw}{w} \, . \tag{A.2}$$

We then have $\psi^* \overline{\omega} = \omega_a \, \mathrm{d} x^a = \omega_{\psi}$, a 1-form on M depending on ψ and describing the connection relative to the tetrad field ψ . The curvature form is given by $d\overline{\omega}$ (on B) or by $\psi^* d\overline{\omega} = d\omega_{\psi}$ (on M).

A map η which associates with each cross section ψ of B a complex valued function η_{ψ} such that, for each map $z: M \to C$,

$$\eta_{wz}(x) = z_x^p \, \bar{z}_x^q \, \eta_w(x) \,, \tag{A.3}$$

where (p, q) is a pair of integers, is said to be a *quantity of type* (p, q). If η is of type (p, q), its complex conjugate $\overline{\eta}$ is of type (q, p). The quantities of a definite type (p, q) form a C vector space, the quantities of all types together form a graded algebra \mathfrak{A} .

^{*} This note should be considered as a supplement to the preceding paper by A. Held.