The Infinite Atom Dicke Maser Model II

E. B. Davies
Mathematical Institute, Oxford, U.K.

Received July 3, 1973

Abstract

We study the time evolution of a quantum field under a Hamiltonian constructed in an earlier paper by taking the limit as $n \rightarrow \infty$ of a Dicke maser model Hamiltonian for n radiating atoms. We show that the radiation field converges to a dynamic equilibrium state independent of its initial state and that the strength of the field is inversely proportional to the square of the distance from the source. A number of variations of the Hamiltonian are also considered.

1. Definition of the Hamiltonian

In an earlier paper [2] we studied the limit as $n \rightarrow \infty$ of a sequence of Dicke maser model Hamiltonians H_{n} on the spaces

$$
\begin{equation*}
\left\{\otimes^{n} \mathbb{C}^{2}\right\} \otimes \mathscr{F} \tag{1.1}
\end{equation*}
$$

where \mathscr{F} is a Boson Fock space. The Hamiltonian H_{n} describes a simple interaction between $n 2$-level atoms and a quantum field with an infinite number of degrees of freedom. The limiting Hamiltonian H was realised on

$$
\begin{equation*}
l^{2}(\mathbb{Z}) \otimes \mathscr{F} \simeq L^{2}\{(-\pi, \pi), \mathscr{F}\} \tag{1.2}
\end{equation*}
$$

In this paper we study the time evolution for the limiting Hamiltonian. This is done in substantially greater generality than is required for the development of [2]. The reason for this is that we wish to be able to treat a number of variations of the maser model - for example the case of multi-level atoms with a number of different emission modes.

We start by describing the quantum field in terms of a representation of the canonical commutation relations. We take a complex test function space D dense in the single particle Hilbert space $D^{-} ; D$ is supposed to be a complete locally convex topological linear space under a topology stronger than the Hilbert space topology. The single particle Hamiltonian S is supposed to be essentially self-adjoint on D and the unitary group $e^{i S t}$ is supposed to leave D invariant and to be jointly continuous from $\mathbb{R} \times D$ to D. The quantum field is defined on a Hilbert space \mathscr{K} by a representation of the C.C.R.'s on \mathscr{K}. For each $f \in D$ there is a unitary

