Commun. math. Phys. 34, 237–249 (1973) © by Springer-Verlag 1973

The Infinite Atom Dicke Maser Model II

E. B. Davies

Mathematical Institute, Oxford, U.K.

Received July 3, 1973

Abstract. We study the time evolution of a quantum field under a Hamiltonian constructed in an earlier paper by taking the limit as $n \to \infty$ of a Dicke maser model Hamiltonian for *n* radiating atoms. We show that the radiation field converges to a dynamic equilibrium state independent of its initial state and that the strength of the field is inversely proportional to the square of the distance from the source. A number of variations of the Hamiltonian are also considered.

1. Definition of the Hamiltonian

In an earlier paper [2] we studied the limit as $n \to \infty$ of a sequence of Dicke maser model Hamiltonians H_n on the spaces

$$\{\otimes^{n} \mathbb{C}^{2}\} \otimes \mathscr{F}$$

$$(1.1)$$

where \mathcal{F} is a Boson Fock space. The Hamiltonian H_n describes a simple interaction between *n* 2-level atoms and a quantum field with an infinite number of degrees of freedom. The limiting Hamiltonian *H* was realised on

$$l^2(\mathbb{Z})\otimes \mathscr{F}\simeq L^2\{(-\pi,\pi),\mathscr{F}\}.$$
 (1.2)

In this paper we study the time evolution for the limiting Hamiltonian. This is done in substantially greater generality than is required for the development of [2]. The reason for this is that we wish to be able to treat a number of variations of the maser model – for example the case of multi-level atoms with a number of different emission modes.

We start by describing the quantum field in terms of a representation of the canonical commutation relations. We take a complex test function space *D* dense in the single particle Hilbert space D^- ; *D* is supposed to be a complete locally convex topological linear space under a topology stronger than the Hilbert space topology. The single particle Hamiltonian *S* is supposed to be essentially self-adjoint on *D* and the unitary group e^{iSt} is supposed to leave *D* invariant and to be jointly continuous from $\mathbb{R} \times D$ to *D*. The quantum field is defined on a Hilbert space \mathscr{K} by a representation of the C.C.R.'s on \mathscr{K} . For each $f \in D$ there is a unitary