Commun. math. Phys. 34, 223–228 (1973) © by Springer-Verlag 1973

Non Quasi-free Classes of Product States of the C.C.R.-Algebra

J. F. Gille*

Centre de Physique Théorique, C.N.R.S., Marseille, France

Received May 16. 1973

Abstract. Two exemples of pure states of Van Hove's Universal Receptacle in the boson case are presented with are not unitarily equivalent to any quasi-free state. In particular, it is shown that a discrete state is unitarily equivalent to some quasi-free state if and only if it is equivalent to the Fock state related to the chosen decomposition of the test function space.

I. Introduction

This paper is a continuation of a previous one [1] in which we showed that non discrete pure states of the Van Hove's Universal Receptacle in the fermion case are not unitarily equivalent to any quasi-free state. The situation in the boson case is a little more complicated. Indeed, the quasifree states of the C.C.R.-algebra are of discrete and non discrete type [2]. If we restrict ourselves to a fixed basis of the test function space H_0 the discrete states are equivalent to a class of states which we called "physically pure" ones. Those "physically pure" states are different from the quasifree states except for the Fock state, moreover there exist¹ non discrete states which are disjoint from every quasi-free state of the decomposition of H_0 we consider. But the question remained open as if we can state the same assertions considering all quasi-free states issued from any possible decomposition of H_0 .

I.1. Notations

Let $(H_k)_{k \in \mathbb{N}}$ a countable family of two-dimensional real vector spaces, and $H = \bigoplus_{k \in \mathbb{N}} H_k$ the weak sum of the H_k 's. $(H = \{\varphi \in H_0 | P_k \varphi = 0 \text{ for a} finite number of k's\}, H_0 = \bigoplus_{k \in \mathbb{N}} H_k$ denoting the Hilbert sum).

Equipped with σ , a regular, antisymmetric, real bilinear form (H_0, σ) is a separable symplectic space.

^{*} Attaché de Recherches – C.N.R.S. – Marseille.

¹ The Klauder-McKenna-Woods criterion [3] provides examples of this, as $\Omega_k = 1/\sqrt{2} \xi_k^1 + 1/\sqrt{2} \xi_k^2$. See notation further.