Commun. math. Phys. 34, 77—83 (1973) © by Springer-Verlag 1973

A Class of Stationary Solutions of the Einstein-Maxwell Equations

W. B. Bonnor

Queen Elizabeth College, University of London, London, U.K.

Received April 27, 1973

Abstract. The class depends on one harmonic function and two additional arbitrary constants. It refers to sources with spin and electric or magnetic charge, and includes some space-times which are flat at spatial infinity. However, it does not include a solution for a spinning particle with monopole charge and mass.

§ 1. Introduction

Among the known electrostatic solutions of Einstein-Maxwell theory are those of Papapetrou-Majumdar (PM) [1, 2] and those of Weyl [3]. Members of the PM class need have no spatial symmetry but every source is such that, in relativistic units,

$$m = |e|, \qquad (1.1)$$

m and *e* being the mass and charge. Weyl's solutions have axial symmetry but the sources are less specialised and satisfy

$$m = ke , \qquad (1.2)$$

k being a constant, the same for all. Thus the two classes are different, but have some common members.

Recently the PM solution has been generalised to what are called PIW solutions [4, 5]. These are stationary, need have no spatial symmetry, and arise from sources satisfying

$$m = |e|, \quad \mathbf{h} = \pm \, \boldsymbol{\mu} \,, \tag{1.3}$$

 h, μ being angular momentum and magnetic moment. It is a natural step to seek that class of axially symmetric solutions which is related to the PIW class in a way similar to that in which the Weyl class is related to the PM class. The solutions would depend on two harmonic functions (like PIW) and would have

$$m = ke, \quad \mathbf{h} = k' \boldsymbol{\mu}.$$
 (1.4)