Commun. math. Phys. 30, 211–227 (1973) © by Springer-Verlag 1973

Equivalence between Non-localizable and Local Fields

J. G. Taylor

Department of Mathematics, King's College, London, U.K.

F. Constantinescu

Department of Applied Mathematics, University of Frankfurt, Federal Republic of Germany

Received September 21, 1972

Abstract. We discuss the nature of non-localisable fields constructed as certain limits of sequences of local fields. For sequences for which the corresponding Wightman functions converge we construct a PCT operator; if the sequences converge strongly in a given Hilbert space then a scattering theory can be constructed for the non-localisable limit field. Such fields are shown to have the same S-operator as any local field which has the defining sequence of local fields in its Borchers class, and has the same in field. We give non-trivial examples of this equivalence between local and non-localisable fields.

1. Introduction

The problem of describing all relativistic quantum fields corresponding to a given S-matrix has not been yet solved. An important result in this direction was obtained by Borchers [1] in the frame of the (Wightman) axiomatic quantum field theory. According to this result of Borchers, fields are S-equivalent (i.e. correspond to the same S-matrix) if they are relatively local (or weakly relatively local). The relative locality (or the weak relative locality) is a relation of equivalence among quantum fields, so that all fields in a Borchers class (i.e. a class of relatively local or weak relatively local fields) are S-equivalent. The converse is not true: a Borchers class does not exhaust all fields with the same S-matrix (see for instance [2], p. 170) but we do not consider this problem here.

The S-equivalence of relativistic quantum fields was also studied in perturbation theory; we refer the reader to [3] and references quoted there for detailed results.

Roughly speaking the above results (in the axiomatic or in perturbation theory) are known to physicists in the following form: two fields, one of them being a *local function* of the other one, have the same *S*-matrix.