Commun. math. Phys. 30, 35–44 (1973) © by Springer-Verlag 1973

Correlation Functions and the Uniqueness of the State in Classical Statistical Mechanics*

A. Lenard**

Institute for Advanced Study Princeton, New Jersey, USA

Received October 31, 1972

Abstract. A general criterion is derived which assures the uniqueness of the state of a classical statistical mechanical system in terms of a given system of correlation functions. The criterion is $\sum (m_{k+j}^A)^{-1/k} = \infty$ for all j and all bounded sets A, where

 $m_k^{\mathcal{A}} = (k!)^{-1} \int_{\mathcal{A}} \cdots \int_{\mathcal{A}} \varrho_k(x_1, \ldots, x_k) \, dx_1 \ldots dx_k \, .$

1. Introduction

In the older literature of classical statistical mechanics it was taken for granted, although not explicitly stated, that the sequence of *correlation functions* ϱ_n , n = 1, 2, 3, ..., in their totality uniquely characterize the (statistical) state of the system to which they refer. That this is not the case in general was pointed out by Ruelle¹. Thus, the problem arises of supplying criteria under which the uniqueness of the state is guaranteed. Such a criterion was already given in Ruelle's book, namely the existence of a positive constant c such that $|\varrho_n(x_1, x_2, ..., x_n)| \leq c^n$ for all n and almost all values of the variables. Nevertheless, the question is interesting enough to merit more detailed investigation; the present paper is devoted to this task.

Before one can attack the problem it is necessary to specify precisely the mathematical set-up in whose context the question is posed. In a quite general manner, we do this as follows. We consider a space X (the analogue of Gibbs's phase space) whose points ξ are infinite "particle configurations" in a space E (the "one particle space"). A natural measure theoretical structure is defined in X. A state of the system is taken to mean a probability measure μ over X. Since the correlation functions q_n

^{*} Research partially sponsored by the Office of Aerospace Research of the USAF under AFOSR Grant 70-1866C.

^{}** Permanent address: Department of Mathematics, Indiana University, Bloomington, Indiana 47401, USA.

¹ Ref. [4], p. 103 and Exercise 4E.