Commun. math. Phys. 27, 137—145 (1972) © by Springer-Verlag 1972

Asymptotic Completeness for Multi-Particle Schroedinger Hamiltonians with Weak Potentials

RAFAEL JOSF IORIO, JR. and MICHAEL O'CARROLL

Departamento de Matemática, Pontificia Universidade Católica, Rio de Janeiro, Brasil

Received March 15, 1972

Abstract. We show that the non-relativistic quantum mechanical *n*-body Hamiltonians T(k) = T + kV and *T*, the free particle Hamiltonian, are unitarily equivalent in the center of mass system, i.e., $T(k) = W_{\pm}(k) T W_{\pm}(k)^{-1}$ for *k* sufficiently small and real. $V = \sum_{i} V_i$, a sum of $\frac{n(n-1)}{2}$ real pair potentials, V_i , depending on the relative coordinate $x_i \in \mathbb{R}^3$ of the pair *i*, where V_i is required to behave like $|x_i|^{-2-\varepsilon}$ as $|x_i| \to \infty$ and like $|x_i|^{-2+\varepsilon}$ as $|x_i| \to \infty$ and like $|x_i|^{-2+\varepsilon}$ no smoothness requirements imposed on the V_i . Furthermore $W_{\pm}(k) = \underset{\substack{s - \lim t \to \infty}{s - \lim t \infty}}{s - \lim t \infty} t$

are the wave operators of time dependent scattering theory and are unitary. This result gives a quantitative form of the intuitive argument based on the Heisenberg uncertainty principle that a certain minimum potential well depth and range is needed before a bound state can be formed. This is the best possible long range behavior in the sense that if $k V_i \leq C_i |x_i|^{-b}$, $0 < k \leq 2$ for $|x_i| > R_i (0 < R_i < \infty)$ and all C_i are negative then T(k) has discrete eigenvalues and $W_{\pm}(k)$ are not unitary.

0. Introduction

In this article we treat the scattering and spectral problem for an *n*-body system in non-relativistic quantum mechanics with weak potentials. We show that the method of Kato [1] used to show asymptotic completeness and unitarity of the wave operators for weak potentials in the two-body case can be applied to obtain similar results in the *n*-body case. More precisely we show that in the center of mass system Hilbert space $H = L^2(R^{3n-3})$ the self-adjoint operators T(k) = T + kV (the self-adjoint operator associated with a form sum) and T (the free particle Hamiltonian) are unitarily equivalent for sufficiently small, real k. The potential $V = \sum_{i} V_i$ is a sum of pair potentials, V_i , which are real-valued measurable functions depending on the relative coordinates $x_i \in R^3$ of the pair *i*. Writing

 $A_i = |V_i|^{1/2}, \quad B_i = (\operatorname{sign} V_i) A_i,$

the result follows from the crucial fact that the operators $A_i(T-z)^{-1}B_j^*$ admit bounded analytic extensions for $\text{Im} z \neq 0$, the bound being in-