Exact Gravitational Field of the Infinitely Long Rotating Hollow Cylinder

Eckart Frehland
Lehrstuhl für Theoretische Physik der Universität Konstanz

Received December 13, 1971

Abstract

The vacuum line element inside an infinitely long rotating hollow cylinder is the usual flat space line element. It is fitted in a most general way to the general cylindrical vacuum field outside at the singular hypersurface $R_{0}=$ const, representing the infinitely thin hollow cylinder. With the use of the jump conditions at $R_{0}=$ const the surface densities τ_{μ}^{ν}, of which the energy-momentum-stress tensor τ_{μ}^{ν} of the shell consists, are calculated. The physical properties of the cylinder, as derived from the eigenvalues and -vectors of τ_{μ}^{v}, and the generated gravitational field are discussed in full detail.

1. Introduction

Recently we have shown [1] (in the following cited as I), that the general stationary cylindrical vacuum field, found by Davies and Caplan [2] is static, whereafter, it is identical with Levi-Civitas general static solution [3]. Hence any stationary (rotating) cylindrical matter distributions generate a static cylindrical vacuum field. As far as we know the only rigorously treated example for this class of matter distributions is the rotating cylinder of Van Stockum [4], consisting of incoherent matter.

In this paper we present the general solution for the uniformly rotating infinitely thin hollow cylinder. The general-relativistic procedure of constructing the gravitational field of such surface distributions has been given by Lanczos [5], Israel [6], Treder [7] et al. The main results, which we shall need in this paper, are: Choosing natural (Gaussian) coordinates in which the metric tensor is continuous across the (singular) hypersurface $x_{1}=a=$ const, we get the line-element in the form

$$
\begin{equation*}
d s^{2}=-d x^{1^{2}}+g_{i k} d x^{i} d x^{k} \quad(i, k=2,3,4) \tag{1.1}
\end{equation*}
$$

The energy-momentum-stress tensor T_{μ}^{ν} has the surface-density structure ${ }^{1}$

$$
\begin{equation*}
T_{\mu}^{v}=\tau_{\mu}^{v} \delta\left(x_{1}-a\right) \tag{1.2}
\end{equation*}
$$

According to the definition of the δ-function Einstein's field equations of gravitation

$$
\begin{equation*}
R_{\mu \nu}=-\left(T_{\mu \nu}-\frac{1}{2} T g_{\mu \nu}\right) \tag{1.3}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ Greek indices run from 1-4, latin indices (except i, k) from 1-3.

