Commun. math. Phys. 26, 280–289 (1972) © by Springer-Verlag 1972

Inequalities for Traces on von Neumann Algebras

M. B. RUSKAI*

Department of Theoretical Physics, University of Geneva, Geneva, Switzerland

Received January 24, 1972

Abstract. A number of useful inequalities, which are known for the trace on a separable Hilbert space, are extended to traces on von Neumann algebras. In particular, we prove the Golden rule, Hölder inequality, and some convexity statements.

A number of useful inequalities relating the traces of operators on a Hilbert space are known¹ when the trace is defined in the usual way. In this paper, we consider generalizations of some of these inequalities to traces on von Neumann algebras. In a subsequent paper, we will discuss applications to entropy and statistical mechanics.

In what follows τ will always be a normal, faithful² semifinite trace on a von Neumann algebra, \mathfrak{A} , of operators on a Hilbert space \mathscr{H} . This means that τ is a function, defined on $\mathfrak{A}^+ = \{A : A \ge 0\}$ and extended to the 2-sided ideal, M, whose positive part is $M^+ = \{A : A \ge 0 \text{ and } \tau(A) < \infty\}$ with the following properties³:

a)	$\tau(A) \ge 0$	if	$A \ge 0$.	((1))
----	-----------------	----	-------------	---	-----	---

- b) $\tau(A + \lambda B) = \tau(A) + \lambda \tau(B)$ if i) λ in C; A, B in M or, ii) $\lambda \ge 0$; A, $B \ge 0$. (2)
- c) $\tau(A) = \tau(UAU^*)$ if $A \ge 0$; U is unitary. (3)
- d) $\tau(AB) = \tau(BA)$ if (4) i) A in M, B in \mathfrak{A} or, ii) $B = A^*$ in \mathfrak{A} .
- e) (Normal): If $\{A_i\}$ is a bounded increasing net of positive operators, then $\sup \tau(A_i) = \tau(\sup A_i)$ (5)

^{*} Battelle Fellow, 1970-1971.

¹ See, for example [1–4].

² The restriction to faithful traces is not really necessary, (see [5], Corollary 2, p. 83) but simplifies things slightly.

³ Properties (a), (bii), and (c) suffice to define a trace (see [5], p. 81).