Stability of Homogeneous Universes*

Sotirios Bonanos
Department of Physics, University of California, Santa Barbara, California, USA

Received November 19, 1971; in revised form January 24, 1972

Abstract

The stability of a class of homogeneous cosmological models is investigated. It is shown that the perturbation problem for six such universes can be reduced to a system of ordinary differential equations. The time development of the perturbations is such that they remain finite at all times for which the unperturbed metric is non-singular.

I. Introduction

In a previous paper [1] the stability of the Taub universe was analyzed and shown to reduce to a system of ordinary differential equations. In this paper we generalize that result to universes whose 3 -surfaces of homogeneity admit a simply transitive, 3-parameter group of motions of Bianchi types I, II, VII ${ }_{0}$, VIII, and IX, as well as to the KantowskiSachs universe [2]. Except for the Kantowski-Sachs case, which is discussed in Appendix B, all these universes belong to "class A" in the classification of homogeneous cosmological models given by Ellis and McCallum [3]. These are non-rotating universes with the flow vector of matter (assumed perfect fluid) orthogonal to the surfaces of homogeneity. The group structure is of the form

$$
\begin{equation*}
\left[X_{1}, X_{2}\right]=N_{3} X_{3}, \quad\left[X_{2}, X_{3}\right]=N_{1} X_{1}, \quad\left[X_{3}, X_{1}\right]=N_{2} X_{2} \tag{1.1}
\end{equation*}
$$

where the $N_{\alpha}{ }^{1}$ can be chosen to equal 0 or ± 1.
If we define the 1 -forms ω^{α} by $\left\langle\omega^{\alpha}, X_{\beta}\right\rangle=\delta_{\beta}^{\alpha}$, we can write the metric for these universes as

$$
\begin{equation*}
d s^{2}=d t^{2}-A\left(\omega^{1}\right)^{2}-C\left(\omega^{2}\right)^{2}-B\left(\omega^{3}\right)^{2} \tag{1.2}
\end{equation*}
$$

where A, C, and B are functions of the time, t, to be determined by Einstein's field equations (see [3], Section 4, for justification of this form of the metric). We will further restrict our universes by requiring local rotational symmetry $[3,4]$. This is equivalent to demanding $A=C$ and $N_{1}=N_{2}$ and is made in order that the "Laplacian operator" $g^{\alpha \beta} X_{\alpha} X_{\beta}$ separates in the coordinates used to express the X_{α} (see Appendix A). We thus consider groups satisfying

$$
\begin{equation*}
\left[X_{1}, X_{2}\right]=N X_{3}, \quad\left[X_{2}, X_{3}\right]=n X_{1}, \quad\left[X_{3}, X_{1}\right]=n X_{2} \tag{1.3}
\end{equation*}
$$

[^0]
[^0]: * Work supported in part by the National Science Foundation.
 ${ }^{1}$ Greek indices have the range $1,2,3$; Latin $0,1,2,3$.

