Calculation of Superpropagators in Non-linear Quantum Field Theories

N. M. Atakishiev and A. T. Filippov
Joint Institute for Nuclear Research, Laboratory of Theoretical Physics

Received April 16, 1971

Abstract

A new method of constructing the superpropagators, i.e. the Fourier transforms of the expressions of the form $\sum_{n=1}^{\infty} c_{n} \Delta_{F}^{n}(x)$ is suggested. The method makes it possible to derive by use of the same technique explicit analytic expressions for the superpropagators for a wide class of field theories - from strictly local up to essentially non-local. The essence of the method is the construction of a differential equation for the superpropagator which in general is of an infinite order. By use of the boundary condition at $p^{2}=0$ we find the solution of this equation depending on one arbitrary real parameter. Simple examples are given to illustrate the method.

I. Introduction

In the theories with the essentially nonlinear (non-polynomial) Lagrangians (for example, in the chiral field theories) one encounters the necessity of calculating the superpropagators, i.e. the Fourier transforms of the expressions of the form ${ }^{1} \sum_{n=1}^{\infty} c_{n}\left[g^{2} \Delta_{F}(x)\right]^{n}$. The same problem holds for the polynomial nonrenormalizable field theories treated by use of equivalence theorems. In the present paper a rather general method of constructing the superpropagators is suggested. This method makes it possible to derive explicit analytic expressions for the superpropagators for a wide class of field theories - from strictly local up to essentially non-local - by use of the same technique.

The idea of the method originates in the earlier investigations of the approximate linear integral equations for the Green's functions in nonrenormalizable theories [1-6]. In particular, the Edwards equations, the Bethe-Salpeter equations and the integral equation for the simplest superpropagator which corresponds to the expression

$$
\Delta_{F}(x)\left[1-g^{2} \Delta_{F}(x)\right]^{-1}
$$

[^0]
[^0]: ${ }^{1}$ The notations are introduced below.

