Commun. math. Phys. 23, 319—342 (1971) © by Springer-Verlag 1971

Spin Waves and the BCS Model

A. WEHRL

CERN – Geneva

Received June 10, 1971

Abstract. We discuss the behaviour of the BCS model in the limit of infinitely many degrees of freedom. A new limiting procedure, based on spin waves, is proposed, by which the usual convergence difficulties can be overcome.

Introduction

This article is concerned with the behaviour of the Bardeen-Cooper-Schrieffer model [1] in the limit of infinitely many degrees of freedom. Since this problem has already been extensively studied by several authors [2–5], some explanation is needed for the publication of a new paper on this subject.

The method used by the above authors is, in essence, the following: for any finite number, say Ω , of degrees of freedom, the system is determined by a C*-algebra \mathfrak{A}_{Ω} and a Hamiltonian H_{Ω} . The algebras \mathfrak{A}_{Ω} form an ascending series,

$$\mathfrak{A}_{\Omega} \subseteq \mathfrak{A}_{\Omega'}$$

if $\Omega < \Omega'$, thus it is possible to define a new C*-algebra \mathfrak{A}_{∞} by

 $\mathfrak{A}_{\scriptscriptstyle \infty} = \text{norm completion of } \bigcup_{\Omega} \mathfrak{A}_{\Omega}$

 \mathfrak{A}_{∞} is the smallest C*-algebra containing all \mathfrak{A}_{Ω} .

Now one constructs suitable representations π of \mathfrak{A}_{∞} – mostly the thermodynamic representations [6] which are readily obtained using the results of Thirring and Bogoliubov, Jr. [7] – and asks the following questions:

- i) does $\pi(H_{\Omega})$ converge, at least on a dense set?
- ii) does $\pi(\exp iH_{\Omega}t)$ converge towards a unitary operator?
- iii) does, for $S \in \pi(\mathfrak{A}_{\infty})$

$$\pi(\exp iH_{\Omega}t) S\pi(\exp -iH_{\Omega}t)$$

converge and determine an automorphism of the algebra \mathfrak{A}_{∞} ? (This automorphism may, of course, be representation-dependent.)

23 Commun. math. Phys., Vol. 23