The General Stationary Gravitational Vacuum Field of Cylindrical Symmetry

Eckart Frehland
Physikalisches Institut der Universität Freiburg, Abteilung Theoretische Physik, Freiburg i. Br.

Received June 14, 1971

Abstract

The general stationary vacuum gravitational field of cylindrical symmetry as recently found by Davies and Caplan is even static. The possible Petrov types of the Riemann tensor are I, D or O. In spacelike infinity the spacetime becomes necessarily flat.

1. Introduction

Levy and Robinson [1] have argued that for axisymmetric stationary systems and modulo the vacuum field equations

$$
\begin{equation*}
R_{\mu \nu}=0 \tag{1.1}
\end{equation*}
$$

there exists a canonical (cylindrical) coordinate system in which the line element takes the form

$$
\begin{align*}
d s^{2}=e^{2 u}(d t+a d \varphi)^{2} & -e^{2(k-u)}\left(d r^{2}+d z^{2}\right) \\
& -r^{2} e^{-2 u} d \varphi^{2} \tag{1.2}
\end{align*}
$$

$a=0$ corresponds to Weyl's canonical coordinates for the static case. If u, k, a are functions of r only, the line element represents the vacuum gravitational field within or outside an infinite, axially symmetric rotating cylindrical mass distribution and the field Eq. (1.1) reduce to

$$
\begin{gather*}
\frac{d^{2} u}{d r^{2}}+\frac{1}{r} \frac{d u}{d r}+\frac{1}{2 r^{2}} e^{4 u}\left(\frac{d a}{d r}\right)^{2}=0 \\
\frac{d^{2} a}{d r^{2}}-\frac{1}{r} \frac{d a}{d r}+4 \frac{d a}{d r} \frac{d u}{d r}=0 \tag{1.3}\\
\frac{2}{r} \frac{d k}{d r}-2\left(\frac{d u}{d r}\right)^{2}+\frac{1}{2 r^{2}} e^{4 u}\left(\frac{d a}{d r}\right)^{2}=0
\end{gather*}
$$

Recently Davies and Caplan [2] have found the general solution of (1.3), from which they deduced, that under the condition u, a, k to be finite at $r=0$ the interior of the rotating cylinder is flat.

