Classical Relativistic Particles

R. Arens
University of California, Los Angeles, California

Received August 25, 1970

Abstract

The concept of Lorentz-invariant classical elementary particle is made precise and it is found that there are exactly two families: (0) the well-known free pointparticles distinguished only by their masses and $(+)$ a family with eight-dimensional phase space whose members are distinguished either by their mass or their positive spin.

1. Introduction

An invariant elementary one-particle system has a space of states M in which the space-time group (here Poincaré, i.e., inhomogeneous Lorentz group) operates or acts in a transitive way. We require transitivity in our definition because if there were a non-trivial subset of states which was invariant then this would define a more elementary system.

We require also that for each state m (or initial condition for some Lorentz frame) there should be defined a position and velocity $\pi(m)$, to be thought of as the state of the centroid. This map π should be such that the centroid moves in the way a free point-particle is always supposed to move.

The last requirement is that there should be a Poisson bracket defined for functions on M and "generating" functions h_{1}, \ldots, h_{10} such that the infinitesimal space-time transformations X_{1}, \ldots, X_{10} are represented by $X_{i} f=\left\{h_{i}, f\right\}$.

In the present paper, we classify only the cases where M is connected. The result is that there is allowed not only the free point-particles with various positive masses, but also systems with eight-dimensional state space. These are distinguished by their masses and their positive spin value.

For different values of these parameters the systems are not canonically equivalent. However, those with non-zero spin have general features in common with the example (mass 1 and spin 1 , usually called $\frac{1}{2}$) already presented in [3, Section 5]. It was also shown that this system is the correspondence-limit of the Dirac system.

In all systems of spin zero, the space M is essentially \boldsymbol{R}^{6} (real cartesian six-space) and the action of \mathscr{P} there is the same for all. The individual particle parameter resides in the Poisson bracket. In the systems of nonzero spin, M is essentially $R^{6} \times S^{2}$ where S^{2} is the set of unit vectors in R^{3}.

