Commun. math. Phys. 19, 273 – 275 (1970) © by Springer-Verlag 1970

Spatial Representation of Groups of Automorphisms of von Neumann Algebras with Properly Infinite Commutant

MICHAEL HENLE*

Department of Mathematics, Oberlin College, Oberlin, Ohio, USA

Received June 11, 1970

Abstract

Theorem. Let a topological group G be represented $(a \rightarrow \phi_a)$ by *-automorphisms of a von Neumann algebra **R** acting on a separable Hilbert space **H**. Suppose that

(a) G is locally compact and separable,

(b) \mathbf{R}' is properly infinite,

(c) for any $T \in \mathbf{R}$, $x, y \in \mathbf{H}$ the function

$$a \to \langle \phi_a(T) x, y \rangle_H$$

is measurable on G. Then there exists a strongly continuous unitary representation of G on H, $a \rightarrow U_a$, such that for $T \in \mathbb{R}$, $a \in G$,

$$\phi_a(T) = U_a T U_a^* .$$

Let *R* be a von Neumann algebra acting on a separable Hilbert space *H*. Let *G* be a topological group and the map $a \rightarrow \phi_a (a \in G)$ a representation of *G* by *-automorphisms of *R*.

General Problem. When is there a strongly continuous unitary representation, $a \rightarrow U_a$, of G on H such that for $a \in G$, $T \in \mathbf{R}$, $\phi_a(T) = U_a T U_a^*$? The theorem below gives an affirmative answer for a large class of von Neumann algebras. This result may be of use in Quantum Mechanics. This theorem is a generalization of a theorem of Kallman [2]. The author wishes to express his gratitude to Kallman for suggesting this problem.

Theorem. In the context of the general problem stated above, suppose that

(a) G is locally compact and separable,

- (b) the commutant of \mathbf{R} is a properly infinite von Neumann algebra,
- (c) (weak measurability) for any $T \in \mathbf{R}$, $x, y \in \mathbf{H}$, the function

$$a \rightarrow \langle \phi_a(T) x, y \rangle_H$$

^{*} This research was partially supported by NSF Grant GP 16392, and formed part of the author's dissertation at Yale University under the direction of R. Kallman.