Commun. math. Phys. 18, 109–126 (1970) © by Springer-Verlag 1970

On the Scattering Operator for Quantum Fields*

RAPHAEL HÖEGH-KROHN**

Joseph Henry Laboratories, Princeton University, Princeton, N.J.

Received March 23, 1970

Abstract. We study quantum fields interacting by the interactions usually considered in the theory of elementary particles. That is we take the interaction density to be a polynomial P in the fields, and assume that $P = P_b + P_y + P_w$, where P_b is a fourth order polynomial in the boson fields only, P_y is linear in the boson fields and P_w is a polynomial in the fermi fields only. After introducing a space and momentum cut-off in the interaction we prove that the scattering operator exists for all values of the cut-off parameters. We then introduce the scattering operators of relativistic quantum fields as weak limit points of cut-off scattering operators as the cut-off is taken away.

I. Introduction

We consider in this paper a finite number of interacting boson and fermion fields. We will assume that the interaction density is a real polynomial P in the fields themselves, and that P is of the form $P = P_b$ $+ P_y + P_w$. P_b is a polynomial in the boson fields only, which is of fourth order and as a polynomial of real variables P_b is bounded below. P_y is a polynomial which is linear in the boson fields and of even degrees in the fermion fields. P_w is a polynomial of the fermion fields only, which is of even degrees in the fermion fields. We shall refer to the three terms in P as the boson self interaction, the Yukawa interaction and the weak interaction respectively.

Let $\phi(x)$ by any of the fields we consider. We then define the momentum cut-off field by

$$\phi_{\varepsilon}(x) = \int_{\mathbf{R}^3} g_{\varepsilon}(x - y) \,\phi(y) \,dy \tag{1.1}$$

where $g_{\varepsilon}(x)\varepsilon C_0^{\infty}(\mathbb{R}^3)$ and converge to the δ -distribution as ε tends to zero. We shall assume that the free energy H_0 defined as a self adjoint operator on the Fock space \mathscr{F} with domain D_0 is such that all the free fields have strictly positive masses. In that case we know that $\phi_{\varepsilon}(x)$ is, in the boson case a self-adjoint operator with domain containing D_0 , and in the fermi case it is a bounded operator on \mathscr{F} . The cut-off interaction is now given

^{*} This research partially sponsored by the Air Force Office of Scientific Research under Contract AF 49(638)1545.

^{**} At leave from Mathematisk Institutt, Oslo Universitet.