Commun. math. Phys. 17, 343-347 (1970) © by Springer-Verlag 1970

Anisotropic Stresses in Homogeneous Cosmologies

M. A. H. MACCALLUM and J. M. STEWART

Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge

B. G. SCHMIDT

1. Institut für Theoretische Physik, Hamburg

Received March 20, 1970

Abstract. Recently a certain class of homogeneous world models filled with perfect fluid have been discussed, [1, 2]. The corresponding results when anisotropic stresses are included are now examined.

This paper discusses general-relativistic spacetimes admitting a 3-parameter group of motions acting simply-transitively on spacelike surfaces of homogeneity such that the tangent vectors of the normal congruence are Ricci eigenvectors. In previous papers [1, 2] the normals u^a were further assumed to be the fluid flow vectors for a perfect fluid, and the aim of this paper is to investigate the validity of previous results when this restriction is relaxed. Physically this will allow us to consider a fluid with 4-velocity u^a and anisotropic stresses, but with no net energy flux relative to the fluid flow.

The calculation techniques and group classification follow [1]. The results of [1], Section 2, remain valid, and in particular, $\omega = \dot{u} = 0$ and ∂_{α} applied to any covariantly defined quantity gives zero. The energy-momentum tensor has the form [9],

$$T^{ab} = \mu u^a u^b + p h^{ab} + \pi^{ab} \tag{1}$$

where $\pi^{ab} = \pi^{(ab)}$, $\pi^a_{\ a} = \pi^{ab} u_b = 0$. T^{ab} must have the form (1) because u^a is assumed to be a Ricci eigenvector. If we interpret u^a as the mean fluid flow vector then μ is the energy density, p the pressure, and π_{ab} the anisotropic stress measured in the rest frame of u^a . The contracted Bianchi identities $T^{ab}_{\ b} = 0$ read,

$$\dot{\mu} + \mu\theta + (ph^{ab} + \pi^{ab})\left(\frac{1}{3}\theta h_{ab} + \sigma_{ab}\right) = 0, \qquad (2)$$

$$3a^{\nu}\pi_{\nu\alpha} + \pi^{\nu\mu}\varepsilon_{\nu\alpha\tau}n_{\mu}{}^{\tau} = 0.$$
(3)