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The van der Waals Limit for Classical Systems

III. Deviation from the van der Waals-Maxwell Theory
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Abstract. We examine the limiting free energy density a{ρ, 0 + ) = limα(ρ, γ) of a

classical system of particles with the two-body potential q(r) + yvK{γr), at density ρ in v
dimensions. Starting from a variational formula for a(ρ, 0 + ), obtained in Parti of these
papers, we obtain a new upper bound on α(ρ, 0 + ) given by

α(ρ, 0 + ) S CE{ME[a°(ρ) + i X m i n ρ 2 ] + β α - ΪKmm)ρ2} .

Here MEf, called the mid-point envelope of/, is defined for any function / by

MEf(ρ) = inf K/fe + Ό + /((? ~ W

/, called the convex envelope of/, is defined for any / as the maximal convex function
not exceeding /; also α Ξ= J" dsK(s) and K ^ is the minimum of the Fourier transform of K,
while α°(ρ) is the free energy density for K = 0.

For the class of functions K such that X m ί n < 0 and K m i n < 2 a , we deduce from this
upper bound that a(ρ, 0 + ) < C£[α°(ρ) + i α ρ 2 ] for aΠ values of ρ where Λ°(ρ) + i α ρ 2

differs from its convex envelope, or where aΌ(ρ) + \Kmϊnρ
2 differs from its mid-point

envelope. Consequently, the generalized van der Waals equation

does not apply in this case. We prove that in a certain sense the local density is non-uniform
over distances of order y'1 in this case, and infer that this density is periodic.

We also give a simpler derivation of other bounds on α(ρ, 0 + ) obtained by Lebowitz
and Penrose.

I. Introduction

Following the work of Kac, Uhlenbeck, and Hemmer [1] and
van Kampen [2] on the van der Waals equation, Lebowitz and Penrose
[3] (henceforth referred to as LP) considered the pressure of a v-dimen-
sional system of particles with the two-body potential

(1.1)


