Stable Potentials, II

A. Lenard* and S. Sherman**

Department of Mathematics, Indiana University, Bloomington, Indiana

Received February 6, 1970

Abstract. A family of stable one-dimensional potentials is shown not to be decomposable into the sum of a non-negative function and a function of non-negative type. This settles in the negative a question raised by Ruelle.

§ 1

In his book on Statistical Mechanics [1] Ruelle raised the question whether every (measurable) stable potential on R^{ν} can be decomposed into the sum of a continuous function of non-negative type and a (measurable) non-negative function. In our previous paper on this subject [2] we generalized this problem somewhat and gave examples of stable potentials on Z_{2k+1} $(k \ge 2)$, the group of integers modulo 2k+1, which are not capable of such a decomposition. The physically relevant case is that concerned with the group R^{ν} (for $\nu = 3$). In the present paper we carry the analysis one step closer to this case. In § 2 we give a two parameter family of potentials $\{\varphi_{t,d}\}$ $(0 < t \le 1,$ $-\infty < d < \infty$) with the following property: There is a critical value $d_0 = d_0(t)$ such that $\varphi_{t,d}$ is stable for $d \ge d_0$ and unstable for $d < d_0$. In § 3 we consider the particular case t = 1 and $d_0(1)$, i.e. a potential that in a sense is critically stable, and show that it cannot be decomposed in the manner suggested by Ruelle. In §4 we list some unsolved problems suggested by this paper.

§ 2

Let $\varphi(x)$ be a real valued even function of the real variable x. With a given φ and any positive integer n, we associate the function

$$\Phi_n = \Phi_n(x_1, x_2, ..., x_n) = \sum_{1 \le i, j \le n} \varphi(x_i - x_j).$$
(1)

^{*} Supported by National Science Foundation Grant GP 13627.

^{**} Supported by National Science Foundation Grant GP 7469.

⁷ Commun. math. Phys., Vol. 17