Independence of Local Algebras in Quantum Field Theory ## H. Roos Institut für Theoretische Physik der Universität Göttingen Received October 15, 1969 **Abstract.** It is shown that local C^* -algebras $\mathfrak{A}(O_1)$ and $\mathfrak{A}(O_2)$ associated with space-like separated regions O_1 and O_2 in the Minkowski space are independent. The proof is accomplished by a theorem concerning the structure of the C^* -algebra generated by $\mathfrak{A}(O_1)$ and $\mathfrak{A}(O_2)$. ## I. Introduction Let \mathfrak{A}_1 , \mathfrak{A}_1 , \mathfrak{A}_2 be C^* -algebras with \mathfrak{A}_1 and \mathfrak{A}_2 contained in \mathfrak{A} . Picking a state φ_1 of \mathfrak{A}_1 and a state φ_2 of \mathfrak{A}_2 one may ask whether there exists a state φ of \mathfrak{A} whose restriction to \mathfrak{A}_i equals $\varphi_i(i=1,2)$. If this is the case for any choice of the pair φ_1 , φ_2 then we shall say that the algebras \mathfrak{A}_1 and \mathfrak{A}_2 are "statistically independent". In a Quantum Field Theory let $\mathfrak{A}(O)$ denote the algebra of observables which are associated with the region O of the Minkowski space. We use the symbol $O_1 \times O_2$ to denote that two regions O_1 , O_2 lie totally spacelike to each other. In [1] Haag and Kastler raised the question of whether two algebras $\mathfrak{A}(O_1)$ and $\mathfrak{A}(O_2)$ are statistically independent when $O_1 \times O_2$. If $O_1 + x \times O_2$ for $x \in \mathcal{N}$, \mathcal{N} being a suitably chosen neighbourhood of the origin, we write $O_1 \times O_2$. Starting from standard assumptions of Quantum Field Theory, Schlieder [2] derived the following **Proposition** (Schlieder). Suppose $O_1 \times O_2$. If $x \in \mathfrak{A}(O_1)$ and $y \in \mathfrak{A}(O_2)$ are non-vanishing elements, then $xy \neq 0$. Schlieder also pointed out that the property $xy \neq 0$ for non-vanishing pairs of elements of two commuting algebras \mathfrak{U}_1 , \mathfrak{U}_2 is a necessary condition for statistical independence. We shall show here that this property is also a sufficient condition. One has **Theorem 1.** Let $\mathfrak{A}, \mathfrak{A}_1, \mathfrak{A}_2$ be C^* -algebras with unit elements and let $\mathfrak{A}_i \subset \mathfrak{A}$.