Commun. math. Phys. 16, 231-237 (1970)

The van der Waals Limit for Classical Systems

II. Existence and Continuity of the Canonical Pressure

D. J. GATES

Mathematics Department, Imperial College, London

O. Penrose

The Open University, Walton Hall, Bletchley, Bucks, England

Received September 10, 1969

Abstract. For a v-dimensional system of particles with the two-body potential $q(\mathbf{r}) + \gamma^{\nu} K(\gamma \mathbf{r})$ and density ϱ , it is proved under fairly weak conditions on q and K that the canonical pressure $\pi(\varrho, \gamma)$ and chemical potential $\mu(\varrho, \gamma)$ tend to definite limits when $\gamma \rightarrow 0$. The limiting functions are absolutely continuous and are given in terms of the derivative of the limiting free energy density $a(\varrho, 0+) \equiv \lim_{\alpha \in Q} a(\varrho, \gamma)$ which was found in Part I.

I. Introduction

In Part I of these papers [1] we considered the free energy density $a(\varrho, \gamma)$ of a v-dimensional system of particles with the two-body potential

$$q(\mathbf{r}) + \gamma^{\nu} K(\gamma \mathbf{r}) \tag{1.1}$$

and density ϱ . (We assume there is no external field in the present paper). Under fairly weak conditions on q and K we proved that the *van der Waals limit* $a(\varrho, 0+) \equiv \lim_{n \to 0} a(\varrho, \gamma)$ exists and is given by a variational formula.

In the present paper we consider the canonical chemical potential

$$\mu(\varrho, \gamma) \equiv \frac{\partial}{\partial \varrho} a(\varrho, \gamma) \tag{1.2}$$

and the canonical pressure

$$\pi(\varrho,\gamma) \equiv \left(\varrho \,\frac{\partial}{\partial \varrho} - 1\right) a(\varrho,\gamma) \tag{1.3}$$

for the same system. The existence of these functions was proved by Dobrushin and Minlos [2] (see also [3]). We prove that *their van der Waals limits*

$$\mu(\varrho, 0+) \equiv \lim_{\gamma \to 0} \mu(\varrho, \gamma), \qquad (1.4)$$

$$\pi(\varrho, 0+) \equiv \lim_{\gamma \to 0} \pi(\varrho, \gamma) \tag{1.5}$$