Operations and Measurements. II*

K.-E. HELLWIG** and K. KRAUS

Institut für Theoretische Physik der Universität Marburg

Received February 20, 1969

Abstract. Results of a preceding paper on pure operations are generalized. The application to local field theory is discussed in some detail.

1. Operations

In a previous paper [1] we investigated state changes of a quantum system, called operations.

The state space of the system is a Hilbert space \mathfrak{H} , and in the Heisenberg picture used here its state is described by a fixed density operator W, as long as no operations are performed.

An operation was assumed to consist of an interaction of the system with an apparatus, and a subsequent measurement of some property Q' of the apparatus. If \mathfrak{H}' is the state space of the apparatus, W' its initial state, and S the unitary "scattering" operator in $\mathfrak{H} \otimes \mathfrak{H}'$ which describes the interaction, the state W of the system is changed into

$$\widetilde{W} = \operatorname{Tr}' W, \qquad W = \frac{W}{\operatorname{Tr} \widehat{W}}, \qquad \widehat{W} = (1 \otimes Q') S(W \otimes W') S^*(1 \otimes Q'). \tag{1}$$

This state change may also be described as

$$\widetilde{W} = \frac{\widehat{W}}{\operatorname{Tr}\widehat{W}}, \qquad \widehat{W} = \sum_{k \in K} \sum_{i=1}^{n} c_i A_{ki} W A_{ki}^*, \qquad (2)$$

with the following definitions [1]. Consider the spectral decomposition

$$W' = \sum_{i=1}^{n} c_i P_{\varphi_i} \tag{3}$$

with a complete orthonormal system $\{\varphi'_i, i = 1 \dots n\}$ in $\mathfrak{H}'^1, c_i \ge 0$ and $\sum_{i=1}^n c_i = 1$. The subset of all *i* with $c_i \ne 0$ is denoted by *I*. Furthermore,

^{*} Supported in part by the Deutsche Forschungsgemeinschaft.

^{**} Now at Lehrstuhl I für Theoretische Physik, Technische Universität Berlin.

¹ Our discussion applies to finite *n* as well as to $n = \infty$.