An Algebraic Spectrum Condition

K. KRAUS

Institut für Theoretische Physik der Universität Marburg Marburg, Germany

Received September 24, 1969

Abstract. A condition, necessary and sufficient for the existence of a vacuum representation with positive energy of the quasilocal algebra, is formulated.

Most postulates of axiomatic quantum field theory can be translated easily into the language of C*-algebras [1]. A remarkable exception is the usual spectrum condition. The required algebraic formulation has to assure the existence of a vacuum representation of the quasilocal algebra, for which the energy-momentum spectrum is contained in the future cone \overline{V}_+ . Such a representation will be called a "positive vacuum representation" [4]. Algebraic spectrum conditions have been formulated by Doplicher [2], Montvay [3], and Borchers [4]. In this note, we will propose another condition of this type.

Consider a C*-algebra \mathfrak{A} , called quasilocal algebra¹, and a representation $x \to \alpha_x$ of four-dimensional translations x by automorphisms α_x of \mathfrak{A} . This representation shall be strongly continuous, i.e.,

$$\lim_{x\to 0} \|\alpha_x A - A\| = 0$$

for any $A \in \mathfrak{A}$. Then \mathfrak{A} contains, as a norm-dense invariant sub-*-algebra $\mathfrak{A}^{(1)}$, the set of all $A \in \mathfrak{A}$ for which

$$\operatorname{norm}_{\tau \to 0} \lim \frac{1}{\tau} \left(\alpha_{\tau a} A - A \right) \underset{\mathrm{df.}}{=} D_a A$$

exists for all four-vectors a [5].

A positive linear functional φ on \mathfrak{A} , normalized to $\|\varphi\| = 1$, is called a state. Then, for arbitrary state φ and $A \in \mathfrak{A}^{(1)}$, the functions

$$\hat{\varphi}(\tau | A, a) \stackrel{=}{=} \varphi(A^* \alpha_{\tau a} A)$$

are differentiable with respect to τ . Denote by E_+ the set of all states φ for which

$$\frac{1}{i} \frac{d}{d\tau} \hat{\varphi}(\tau | A, a) \Big|_{\tau=0} = \frac{1}{i} \varphi(A^* D_a A) \ge 0$$

for all $a \in \overline{V}_+$ and all $A \in \mathfrak{A}^{(1)}$.

¹ The local structure of \mathfrak{A} , however, will not be used here.