On the Covariant Structure of the Two-Point Function

A. I. Oksak

Joint Institute for Nuclear Research, Dubna, USSR

and

I. T. TODOROV*

Institute for Advanced Study, Princeton, New Jersey

Abstract. The spectral representation of the two-point function for arbitrary fields proposed recently [1] is rigorously proved and analyzed. The problem is treated in momentum space where the covariant structure is simpler because of the spectrum conditions. For finite-component fields the explicit "matrix" structure is found in coordinate space too and is applied to the definition of time-ordered Green functions for arbitrary spin. The decomposition of the two-point function into kernels of definite spin is carried out in the general case, a necessary and sufficient condition for the growth of the coefficients in this decomposition being given. The positive-definiteness condition (in the case of Hermitian conjugate fields) is fulfilled automatically by the elementary kernels.

The formalism of homogeneous distributions in two dimensional complex domain [2] is used throughout the paper.

Contents

1.	Introduction	
2.	General Form of the Invariant Two-Point Function in Momentum Space	274
2.1.	Differential Form of the Invariance Condition	274
2.2.	Any Invariant Distribution in $D'(V_+ \times \tilde{C}_2 \times \tilde{C}_2)$ is a "Function" of the Algebraic	
	Invariants	275
2.3.	Irreducibility Condition. Homogeneous Invariant Distributions	
3.	The Two-Point Function for Finite-Component Fields	281
3.1.	The Invariant Distribution $F(x; \zeta)$	281
3.2.	Covariant Structure of the Two-Point Function for Finite Dimensional Re-	
	presentation of $SL(2, C)$	283
3.3.	Application to the Definition of the Time-Ordered Green's Function for Arbi-	
	trary Spinor Fields	284
4.	Decomposition of the Two-Point Function with Respect to Spin	287
4.1.	Elementary Invariant Kernels and Poincaré Decomposition of the Two-Point	
	Function	
	Remark on the Positive-Definiteness Condition	290
App	bendix A. Isomorphism between \mathfrak{D}'_{χ} and the Subspace of Homogeneous Distri-	
	bution of Index $-\chi$ of $D'(\tilde{C}_2)$.	291
A.1.	Synopsis on the Description of the Irreducible Representations of $SL(2, C)$ in	
	Terms of Homogeneous Functions ([2])	291
	*On leave of absence from Joint Institute for Nuclear Research, Dubna, USSR	and

from Physical Institute of the Bulgarian Academy of Sciences, Sofia, Bulgaria.