A Remark on Asymptotic Completeness of Local Fields

Max Rinke

Seminar für theoretische Physik der ETH Zürich

Received February 18, 1969

Abstract. Assuming the existence of an asymptotically complete Wightman field with non-trivial S-matrix, we construct a local field such that the Haag-Ruelle scattering theory applied to this field leads to $\mathfrak{Y}_{in} \neq \mathfrak{Y}$ and $\mathfrak{Y}_{in} \neq \mathfrak{Y}_{out}$.

In the framework of local field theory one can define, using the HAAG-RUELLE [1] scattering theory, incoming and outgoing states and the corresponding Hilbert spaces \mathfrak{P}_{in} and \mathfrak{P}_{out} . It is well-known that the axiom of asymptotic completeness ($\mathfrak{P}_{in} = \mathfrak{P}$) is independent of the other axioms of field theory. In order to have an unitary *S*-matrix, it is sufficient to require $\mathfrak{P}_{in} = \mathfrak{P}_{out}$. Starting from an asymptotically complete Wightman field with non-trivial *S*-matrix we shall construct a field which does not fulfill this requirement. The construction will show that in our case asymptotic completeness and unitarity of the *S*-matrix are destroyed by the fact that the functional of truncated vacuum expectation values can be decomposed into a sum of two such (truncated) functionals.

In the following we consider real scalar Wightman fields. We denote the field operator by A(x), the vacuum state by Ω , the representation of the inhomogeneous Lorentz group by $U(a, \Lambda)$ and the Hilbert space by \mathfrak{H} .

In addition to the usual postulates of field theory we require [2]:

(I) Let $\sigma(P)$ be the spectrum of the energy momentum operator P. Then $\sigma(P)$ has the form:

$$\sigma(P) = \{p | p = 0\} \cup \{p | p_0 > 0, \, p^2 = m^2\} \cup \{p | p_0 > 0, \, p^2 \geqq 4 \, m^2\}; \, m > 0 \; .$$

(II) Let \mathfrak{H}_1 be defined by $\mathfrak{H}_1 = \{ \Phi | \Phi \in \mathfrak{H}, (P^2 - m^2) \Phi = 0 \}$, and let $U_1(a, \Lambda)$ be the representation of the inhomogeneous Lorentz group in \mathfrak{H}_1 . Then $U_1(a, \Lambda)$ is an irreducible representation and has spin 0.

(III) Let P_1 be the projection on \mathfrak{H}_1 . Then the following is true:

$$(A(x)\Omega, P_1 A(y)\Omega) = i\Delta^{(+)}(m^2, x - y).$$

With the notation (taken from a paper by HEPP [3])

$$G = \left\{ p | p_0 < 0, \, |p^2 - m^2| < rac{m^2}{2}
ight\}$$