An Existence Proof for the Gap Equation in the Superconductivity Theory

P. BILLARD and G. FANO*

Centre de Physique Théorique et Département de Physique Mathématique d'Université d'Aix Marseille

Received May 28, 1968

Abstract. An existence theorem for the "gap equation" in the superconductivity theory is given, as a consequence of the Schauder-Tychonoff theorem. Sufficient conditions on the kernel are given, which insure the existence of a solution amongst a particular class of continuous functions. The case of a positive kernel is studied in detail.

1. Introduction

For a non relativistic many-fermion system the existence of a "superfluid" or "superconducting" state is related to the appearence of non trivial solutions in a non linear integral equation, called the "gap equation".

Various approximation methods for finding the solution of the gap equation have been devised [1, 2, 3], which give rise to a "linearization" of the equation. All these methods produce solutions with the same nonanalytic behaviour for small values of the interaction strength. A necessary condition for the appearence of non trivial solutions has been given a long time ago by COOPER, MILLS and SESSLER [4] (see also ref. 1). The convergence of an iterative procedure has been proved, under certain conditions, by KITAMURA [5]. Fixed point theorems were first used by ODEH [6]. We prove here an existence theorem under entirely different assumptions, which cover many cases of physical interest. We make use of the Schauder-Tychonoff theorem, which allows us to find a solution amongst a particular class of continuous functions.

2. The Existence Theorem

Let us consider the gap equation in its simplest form (i.e. the equation for the spherically symmetrical solutions at zero temperature):

$$\varphi(k) = \int_{0}^{\infty} K(k, k') \frac{\varphi(k')}{\sqrt{(k'^{2} - 1)^{2} + \varphi(k')^{2}}} dk'$$
(1)

* Supported by contract D. G. R. S. T. No. 6700 976.