Statistical Mechanics of Quantum Spin Systems

DEREK W. ROBINSON CERN - Geneva

Received June 18, 1967

Abstract. The thermodynamic limit of a quantum spin system is considered. It is demonstrated that for a large class of interactions and a wide range of the thermodynamic parameters the equilibrium state of the system is describable by an extremal Z^{ν} -invariant state (a single phase state) over a C^* algebra of local observables. It is further shown that the equilibrium state may be obtained as the solution of a variational problem involving the mean entropy. These results extend results previously obtained for classical spin systems by Gallavotti, Miracle-Sole and Ruelle.

1. Introduction

In recent articles [1, 2, 3] the statistical mechanics of classical spin systems has been considered and it has been shown that, for a large class of interactions and values of the thermodynamic parameters, the state of equilibrium can be described by an extremal (single phase) Z^{ν} invariant state over a C^* algebra \mathfrak{A} of local observables. Further it was demonstrated that the equilibrium state may be obtained as the solution of a variational problem involving the mean entropy of the Z^{ν} invariant states over \mathfrak{A} . The purpose of the present article is to derive similar results for a quantum spin system; our methods are those of [2] and [3].

2. Notation

Consider particles on a lattice Z^{ν} and assume that the occupation number n_i of every lattice point x_i is restricted to take the values $0, 1, \ldots, N$ where $N < +\infty$. We call such a system a spin system; this terminology originates from the fact that $\frac{1}{2}(2n_i - N)$ may be viewed as the value of a spin component.

To describe a quantum spin system we associate with each point $x_i \in Z^p$ a Hilbert space \mathscr{H}_{x_i} of dimension N+1 and with the finite set $\Lambda = \{x_1, \ldots, x_v\}$ we associate the direct product space $\mathscr{H}_{\Lambda} = \prod_{x_i \in \Lambda}^{\infty} \mathscr{H}_{x_i}$. Further we define the algebra of (strictly) local observables $\mathfrak{A}(\Lambda)$ corresponding to Λ to be given by the algebra $\mathfrak{B}(\mathscr{H}_{\Lambda})$ of all bounded