Irreducible Tensors for the Group $\mathbf{S U}_{\mathbf{3}}$

L. Bányai, N. Marinescu, I. Raszillier, and V. Rittenberg*
Institute of Physics of the Academy, Bukarest, Rumania
Received October 5, 1965

Abstract

The explicit determination of the matrix elements of the $S U_{3}$ irreducible tensors is carried out by a purely algebraic method. These expressions may be used to compute the Clebsch-Gordan coefficients by orthogonalisation. For the special case of $(0, q)$ tensors simple formulas are derived.

I. Introduction

Recently compact Lie groups of rank $\geqq 2$ have found wide applications in elementary particle physics. In view of concrete physical problems, for each group the following main problems have to be solved: (a) determination of the irreducible representations (I.R.) and the matrix elements of the group generators, (b) decomposition of the direct product of two I.R. and hence the computation of the Clebsch-Gordan (C.G.) coefficients. It is well known that the groups of rank $\geqq 2$ are not multi-plicity-free (the same representation may occur in the direct product more than once) so that the C.G. coefficients are not completely specified by the basis vectors. The Wigner-Eckart theorem is also modified: the number of reduced matrix elements appearing there is equal to the multiplicity of the equivalent representations.

The simplest of the above groups is $S U_{3}$. In this case the problem (a) has already been solved by a number of authors [$1,2,3,4,5$], while problem (b) has received until now only an incomplete solution. Moshinsky [6] has derived a compact expression for the C.G. coefficients corresponding to the product $(p, q) \otimes\left(p^{\prime}, 0\right)$, which is multi-plicity-free, while Kurian, Lurié and Macfarlane [7] have tabulated the coefficients for the simple product $(p, q) \otimes(1,1)$, Baird and BiedenHARN [8] for the cases $(p, q) \otimes(1,0),(p, q) \otimes(0,1),(p, q) \otimes(1,1)$ and Pandit and Mukunda [9] for the case $(p, q) \otimes(3,0)$. We must also mention the numerical tables of $S U_{3}$ C.G. coefficients [$\left.10,11,12,13\right]$ for the products of lowest representations. However, the general problem of deriving a simple analytical formula analogous to the Wigner-Racah expression for $S U_{2}$ has not yet been solved and it is doubtful if such a task is really possible.

[^0]
[^0]: * In partial fulfillment for the requierements of the doctoral degree at the Institute of Physics of the Academy.

