Commun. Math. Phys. 87, 353-364 (1982)

Derivations Commuting with Abelian Gauge Actions on Lattice Systems

Ola Bratteli* and Palle E. T. Jørgensen**

1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, England

2 Mathematics Institute, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark

Abstract. Let τ be an action of a compact abelian group G on a C^* -algebra \mathscr{A} , and assume that the fixed-point subalgebra \mathscr{A}^{τ} is an AF-algebra. We show that if δ is a closed *-derivation on \mathscr{A} commuting with τ , and the restriction of δ to \mathscr{A}^{τ} generates a one-parameter group of *-automorphisms, then δ itself is a generator. In particular, the result applies if τ is an infinite product action of G on a UHF algebra. Furthermore, if in this situation δ_1 and δ_2 are two derivations both satisfying the hypotheses on δ , and δ_1 and δ_2 have the same restriction to \mathscr{A}^{τ} , then there exists a one-parameter subgroup of the action τ with generator δ_0 such that $D(\delta_1) \cap D(\delta_2) \cap D(\delta_0)$ is a joint core for the three derivations, and δ_2 $= \delta_1 + \delta_0$ on this core.

1. Introduction

Let δ be a closed *-derivation with dense domain $D(\delta)$ in a C*-algebra \mathscr{A} . Assume that δ commutes with a strongly continuous action τ of a compact abelian group Gas *-automorphisms on \mathscr{A} . It was shown in [4] that if δ vanishes identically on the fixed-point algebra $\mathscr{A}^{\tau} = \{A \in \mathscr{A} : \tau(g)(A) = A, g \in G\}$, then δ is the infinitesimal generator of a strongly continuous one-parameter group of *-automorphisms of \mathscr{A} . Briefly, we say that δ is a generator. By a simple perturbation argument, it follows that the assumption $\delta | \mathscr{A}^{\tau} = 0$ may be weakened to the condition that $\delta | \mathscr{A}^{\tau}$ is inner. An example in [4] showed that it is not enough to assume that $\delta | \mathscr{A}^{\tau}$ is a generator on \mathscr{A}^{τ} . In this example, \mathscr{A} is abelian, and there is a geometric obstruction preventing δ from being a generator: Along the integral curves of the propagator, points burst into fibres, and conversely, fibres merge into points, in a finite time, [1].

On the other hand, Kishimoto and Robinson [15] showed that if one adds the assumption that \mathscr{A} has an identity, and $\mathscr{A}^{\mathfrak{r}}(\gamma)^* \mathscr{A}^{\mathfrak{r}}(\gamma) = \mathscr{A}^{\mathfrak{r}}$ for all $\gamma \in \widehat{G}$, where $\mathscr{A}^{\mathfrak{r}}(\gamma) =$

^{*}Permanent address: Institute of Mathematics, N-7034 Trondheim-NTH, Norway

^{**}Address from July 15, 1982: Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA