

A Lower Bound for the Mass of a Random Gaussian Lattice*

David Brydges¹ and Paul Federbush²

¹ Rockefeller University, New York. New York 10021, USA

² Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109, USA

Abstract. We give a criterion that the two point function for a Gaussian lattice with random mass decay exponentially. The proof uses a random walk representation which may be of interest in other contexts.

Random mass gaussian lattices are lattice systems where the single site distribution has the form

$$\left(\int\limits_0^\infty d\sigma(a)e^{-a\phi^2}\right)d\phi\,.$$

An example is $\frac{d\phi}{1+\phi^2}$. Related systems have been discussed quite frequently, at least in one dimension [1].¹

Let $d\sigma(a)$ be a Borel measure on $(0, \infty)$ such that

$$\int d\sigma(a) \left(1+a\right)^{-1/2} < \infty \,. \tag{1}$$

For $\mu \ge 0$, define

$$dm_a(\phi) = \left(\int d\sigma(a)e^{-(a+\mu)\phi^2}\right)d\phi.$$
⁽²⁾

Let $L_{\infty} \subset \mathbb{R}^d$ be a unit lattice centered on the origin, parallel to the coordinate axes. *L* denotes the finite part of L_{∞} contained in the box $\prod_{j=1}^{d} [-l_j + 1/2, l_j - 1/2]$ where (l_j) are given integers. On the space $\mathbb{R}^{|L|}$, where |L| denotes the number of lattice points in *L*, define the probability measure

$$dP_{L,\mu} = Z_{L,\mu}^{-1} \prod_{l \in L} dm_{\mu}(\phi_l) e^{(\phi, A_D \phi)},$$
(3)

$$(\phi, \Delta_D \phi) = -\sum_{l,l'} (\phi_l - \phi_{l'})^2 \,. \tag{4}$$

^{*} Supported by N.S.F. Grants PHY 76-17191, MPS 10751

¹ The thermodynamic limit is taken after integrating over the masses, in this paper