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The recent explosion of activity studying the relation between geometric and 
analytic properties of spaces has fused many areas of mathematics, such as the 
traditionally disparate fields differential geometry, partial differential equa
tions, topology, mathematical physics, and number theory. One of the most 
popular topics in this study is the search for properties of the spectrum of the 
Laplace operator of a manifold in terms of its geometric invariants. Until 
recent decades there have been few significant developments, owing to the 
need for expertise in many fields. Eigenvalue problems are directly related to 
many geometric problems as well as to the disciplines mentioned above. 
Moreover, the techniques that have been developed in studying the Laplacian 
and its spectrum are equally important as the theorems about eigenvalues. This 
versatility factor coupled with the recent undeniable success of geometric 
analysis is responsible for the sudden blossoming of this classical area of 
mathematics. 

The most fundamental object of study is the Laplace-Beltrami operator. 
Being invariantly defined, it is the simplest geometric elliptic operator which 
appears everywhere in geometry. It is the principal part of the expression for 
scalar curvature of a conformai factor in a metric as well as the mean curvature 
and stability form of a hypersurface. More importantly it is the linearization of 
the many nonlinear operators in geometry such as the Gauss curvature 
operator, the mean curvature operator and the Monge-Ampère operator. It is 


