RESEARCH ANNOUNCEMENTS

CR MAPPINGS OF FINITE MULTIPLICITY AND EXTENSION OF PROPER HOLOMORPHIC MAPPINGS

M. S. BAOUENDI, S. R. BELL AND LINDA PREISS ROTHSCHILD

1. Introduction. We shall describe some general theorems about CR mappings between three-dimensional manifolds which, among other results, imply that any proper holomorphic mapping $f: D \rightarrow D^{\prime}$ between pseudoconvex domains in \mathbf{C}^{2} with real analytic boundaries extends to be holomorphic in a neighborhood of the closure of D (Theorem 8). In case the domain D is strictly pseudoconvex, this result follows from the classical Lewy-Pincuk reflection principle $[\mathbf{9}, \mathbf{1 1}]$. In case D^{\prime} is strictly pseudoconvex, or in case D and D^{\prime} are given by polynomial defining functions, f extends by [2]. In case the proper mapping f is biholomorphic, the extendability has been proved by Baouendi, Jacobowitz, and Treves [1]. The general case of a proper holomorphic mapping between weakly pseudoconvex domains which is not biholomorphic is more complicated because branching might occur. We have developed a method in the spirit of [1] which allows us to prove extendability at boundary points even if branching occurs (Theorems 3 and 6).

The mapping $f(z, w)=\left(z^{2}, w\right)$ which maps the domain $\mathbf{E}=\{(z, w) \in$ $\left.\mathbf{C}^{2}:|z|^{4}+|w|^{2}<1\right\}$ onto the unit ball in \mathbf{C}^{2} has the property that it maps points of type four (in the sense of Kohn [8]) in the boundary of \mathbf{E} to points of type two in the boundary of the ball. Furthermore, the local branching order of f at these points is two. We prove that this phenomenon holds in general. If M and M^{\prime} are abstract three-dimensional CR manifolds, and $H: M \rightarrow M^{\prime}$ a CR mapping, there is a notion of multiplicity of H at $p_{0} \in M$, for which the type of p_{0} is equal to the multiplicity at p_{0} times the type of $H\left(p_{0}\right)$. Theorems 1 and 2 state these results more precisely. Theorems 5 and 7 give applications of these results and of the extendability result (Theorem 3) to CR and proper self-mappings.

[^0]
[^0]: Received by the editors October 9, 1986.
 1980 Mathematics Subject Classification (1985 Revision). Primary 32D15, 32H99.
 First author supported by NSF Grant DMS 8603176; second author supported by NSF Grant DMS 8420754 and the Sloan Foundation; third author supported by NSF Grant DMS 8601260.

