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ON A CONJECTURE OF FROBENIUS 

NOBUO IIYORI AND HIROYOSHI YAMAKI 

ABSTRACT. Let G be a finite group and e be a positive integer 
dividing the order of G. Frobenius conjectured that if the 
number of elements whose orders divide e equals e , then G 
has a subgroup of order e . We announce that the Frobenius 
conjecture has been proved via the classification of finite simple 
groups. 

Let G be a finite group and e be a positive integer dividing 
|G|, the order of G. Let Le(G) = {x e G\xe = 1}. In 1895 
Frobenius [4] proved the following result: 

\Le(G)\ = ke for an integer k > 1 

and he made the following conjecture. 

Frobenius conjecture. If k = 1, then the e elements of Le{G) 
form a characteristic subgroup of G, that is, a subgroup of G that 
is invariant under the automorphism group of G. 

If the e elements of Le(G) form a subgroup, then Le(G) is 
necessarily a characteristic subgroup by the definition of Le{G). If 
e is a power of a prime, the conjecture is true by Sylow's theorem. 
M. Hall [6] gives a proof of the conjecture when G is solvable. It 
is proved by Zemlin [16] that the minimal counterexample to the 
conjecture is a nonabelian simple group. The purpose of this note 
is to announce the following 

Theorem. The conjecture of Frobenius is always true. 

Because of the classification of finite simple groups we may as
sume that G is isomorphic with 

(1) An (n > 5) , the alternating group on n letters, 
(2) a simple group of Lie type, or 
(3) one of the twenty-six sporadic simple groups. 
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