SPECTRAL THEORY OF REINHARDT MEASURES

RAÚL E. CURTO AND KEREN YAN

Let μ be a finite positive Borel measure on $\mathbf{C}^{n}(n \geq 1)$, with compact support K, let $P^{2}(\mu)$ be the norm closure in $L^{2}(\mu)$ of the algebra of complex polynomials in z_{1}, \ldots, z_{n}, and let $M_{z}=\left(M_{z_{1}}, \ldots, M_{z_{n}}\right)$ be the n-tuple of multiplication operators by the coordinate functions z_{1}, \ldots, z_{n} acting on $P^{2}(\mu) . M_{z}$ is the universal model for cyclic subnormal n-tuples of operators acting on a separable Hilbert space. For $n=1$, the spectral and algebraic properties of M_{z} have been the focus of extensive study (see [Con] for a survey account of the basic results in this area). One important instance, the case $d \mu\left(\mathrm{re}^{i \theta}\right)=d \rho(r) \times \frac{d \theta}{2 \pi}$ (where ρ is a positive Borel measure on $[0,+\infty)$), gives rise to the class of subnormal weighted shifts, via Berger's Theorem [Con, III.8.16]. Here, the spectral picture of M_{z} admits a very simple description:
(i) $\sigma\left(M_{z}\right)$, the spectrum of M_{z}, equals $D_{\mu}:=\{\lambda \in \mathbf{C}:|\lambda| \leq$ $\sup \{|z|: z \in K\}\}$;
(ii) The Fredholm domain of M_{z} is $\mathbf{C} \backslash \partial D_{\mu}$; and
(iii) $\operatorname{index}\left(M_{z}-\lambda\right)=-1$ whenever $\lambda \in \operatorname{int}\left(D_{\mu}\right)$.

The circular symmetry of weighted shifts, reflected in the above description, appears in several variables in the notion of Reinhardt set; $F \subseteq \mathbf{C}^{n}$ is Reinhardt if $F=\tau^{-1}(\tau(F))$, where $\tau: \mathbf{C}^{n} \rightarrow \mathbf{R}_{+}^{n}$ is given by $z \rightarrow\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right)$. Correspondingly, a compactly supported positive Borel measure μ is Reinhardt if it admits a decomposition $d \mu\left(\mathrm{re}^{i \theta}\right)=d \rho(r) \times d \theta /(2 \pi)^{n}$, where ρ is a positive Borel measure on \mathbf{R}_{+}^{n}. For instance, volumetric Lebesgue measure on a complete bounded Reinhardt domain $\Omega \subseteq \mathbf{C}^{n}$ is a Reinhardt measure, in which case $P^{2}(\mu)$ is actually $A^{2}(\Omega)$, the Bergman space over Ω.

[^0]
[^0]: Received by the editors April 18, 1990.
 1980 Mathematics Subject Classification (1985 Revision). Primary 47A10, 47A53, 47B37, 32A07; Secondary 47B20, 32E20, 47B35, 47A50.

 The research of the first author was partially supported by NSF Grant MCS880139 and by a University of Iowa Faculty Scholar Award.

 The research of the second author was partially supported by NSF Grant DMS 9002969.

