SPECTRAL THEORY OF REINHARDT MEASURES

RAÚL E. CURTO AND KEREN YAN

Let μ be a finite positive Borel measure on \mathbb{C}^n $(n \ge 1)$, with compact support K, let $P^2(\mu)$ be the norm closure in $L^2(\mu)$ of the algebra of complex polynomials in z_1, \ldots, z_n , and let $M_z = (M_{z_1}, \ldots, M_{z_n})$ be the *n*-tuple of multiplication operators by the coordinate functions z_1, \ldots, z_n acting on $P^2(\mu)$. M_z is the universal model for cyclic subnormal *n*-tuples of operators acting on a separable Hilbert space. For n = 1, the spectral and algebraic properties of M_z have been the focus of extensive study (see [Con] for a survey account of the basic results in this area). One important instance, the case $d\mu(\mathrm{re}^{i\theta}) = d\rho(r) \times \frac{d\theta}{2\pi}$ (where ρ is a positive Borel measure on $[0, +\infty)$), gives rise to the class of subnormal weighted shifts, via Berger's Theorem [Con, III.8.16]. Here, the spectral picture of M_z admits a very simple description:

(i) $\sigma(M_z)$, the spectrum of M_z , equals $D_{\mu} := \{\lambda \in \mathbb{C}: |\lambda| \le \sup\{|z|: z \in K\}\}$;

(ii) The Fredholm domain of M_z is $\mathbb{C} \setminus \partial D_u$; and

(iii) $\operatorname{index}(M_z - \lambda) = -1$ whenever $\lambda \in \operatorname{int}(D_u)$.

The circular symmetry of weighted shifts, reflected in the above description, appears in several variables in the notion of *Reinhardt* set; $F \subseteq \mathbb{C}^n$ is Reinhardt if $F = \tau^{-1}(\tau(F))$, where $\tau: \mathbb{C}^n \to \mathbb{R}^n_+$ is given by $z \to (|z_1|, \ldots, |z_n|)$. Correspondingly, a compactly supported positive Borel measure μ is Reinhardt if it admits a decomposition $d\mu(\operatorname{re}^{i\theta}) = d\rho(r) \times d\theta/(2\pi)^n$, where ρ is a positive Borel measure on \mathbb{R}^n_+ . For instance, volumetric Lebesgue measure on a complete bounded Reinhardt domain $\Omega \subseteq \mathbb{C}^n$ is a Reinhardt measure, in which case $P^2(\mu)$ is actually $A^2(\Omega)$, the Bergman space over Ω .

Received by the editors April 18, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 47A10, 47A53, 47B37, 32A07; Secondary 47B20, 32E20, 47B35, 47A50.

The research of the first author was partially supported by NSF Grant MCS88-0139 and by a University of Iowa Faculty Scholar Award.

The research of the second author was partially supported by NSF Grant DMS 9002969.