A COMPLETE SOLUTION TO THE POLYNOMIAL 3-PRIMES PROBLEM

GOVE W. EFFINGER AND DAVID R. HAYES

I. Introduction

By the "classical 3-primes problem" we mean: can every odd number ≥ 7 be written as a sum of three prime numbers? This problem was attacked with spectacular success by Hardy and Littlewood [8] in 1923. Using their famous Circle Method and assuming the Generalized Riemann Hypothesis, they proved that there exists a positive number N such that every odd integer $n \geq N$ is a sum of three primes. In 1937, Vinogradov [12] employed his ingenious methods for estimating exponential sums to prove the Hardy-Littlewood conclusion without invoking the Riemann Hypothesis. The result is therefore known as Vinogradov's Theorem. Vinogradov's proof actually implies a computable value for N, raising the possibility that the classical 3-primes problem can be completely settled by computation. For example, by carefully estimating the errors in Vinogradov's proof, Borodzkin [2] showed that one can take

$$
N=3^{3^{15}} .
$$

Unfortunately, this value is far beyond the minimum that would make the problem accessible to even the fastest computers.

If instead of \mathbf{Z} we consider the ring $\mathbf{F}_{q}[x]$ of polynomials in a single variable x over the finite field \mathbf{F}_{q} of q elements, we can easily formulate, in direct analogy to the classical 3-primes problem, a polynomial 3-primes problem. To this end we observe that the analog of prime number is irreducible polynomial, of positive number is monic polynomial, and we need also:
Definition. A monic polynomial M over \mathbf{F}_{q} is called even if $q=2$ and if M is divisible by x or $x+1$; otherwise M is called odd (so, for all $q \neq 2$, all M are odd).

Received by the editors April 30, 1990 and, in revised form, August 28, 1990.
1980 Mathematics Subject Classification (1985 Revision). Primary 11P32, 11 T 55.

The second author was supported in part by NSF Grant DMS-8903512.

