RESEARCH ANNOUNCEMENTS

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 24, Number 2, April 1991

DISTRIBUTION RIGIDITY FOR UNIPOTENT ACTIONS ON HOMOGENEOUS SPACES

MARINA RATNER

In this paper we study distributions of orbits of unipotent actions on homogeneous spaces.

More specifically, let G be a real Lie group (all groups in this paper are assumed to be second countable) with the Lie algebra \mathfrak{G} , Γ a discrete subgroup of G and $\pi: G \to \Gamma \backslash G$ the projection $\pi(\mathbf{g}) = \Gamma \mathbf{g}$, $\mathbf{g} \in G$. The group G acts by right translations on $\Gamma \backslash G$, $(x, \mathbf{g}) \to x\mathbf{g}$, $x \in \Gamma \backslash G$, $\mathbf{g} \in G$. We say that Γ is a lattice in G if there is a finite G-invariant measure on $\Gamma \backslash G$.

Let $\underline{\mathbf{U}}$ be a subgroup of \mathbf{G} and $x \in \Gamma \backslash \mathbf{G}$. We say that the closure $\overline{x}\overline{\mathbf{U}}$ of the orbit $x\mathbf{U}$ in $\Gamma \backslash \mathbf{G}$ is homogeneous if there is a closed subgroup $\mathbf{H} \subset \mathbf{G}$ such that $\mathbf{U} \subset \mathbf{H}$, $\mathbf{x}\mathbf{H}\mathbf{x}^{-1} \cap \Gamma$ is a lattice in $\mathbf{x}\mathbf{H}\mathbf{x}^{-1}$, $\mathbf{x} \in \pi^{-1}\{x\}$, and $\overline{x}\overline{\mathbf{U}} = x\mathbf{H}$. If these conditions are satisfied, we shall say that $\overline{x}\overline{\mathbf{U}}$ is homogeneous with respect to \mathbf{H} .

Definition 1. A subgroup $U \subset G$ is called *topologically* rigid if given any lattice $\Gamma \subset G$ and any $x \in \Gamma \backslash G$ the closure of the orbit xU in $\Gamma \backslash G$ is homogeneous.

A subgroup $U \subset G$ is called unipotent if for each $u \in U$ the map $Ad_u : \mathfrak{G} \to \mathfrak{G}$ is a unipotent automorphism of \mathfrak{G} .

Raghunathan's Topological Conjecture. Every unipotent subgroup of a connected Lie group G is topologically rigid.

Received by the editors July 26, 1990. 1980 Mathematics Subject Classification (1985 Revision). Primary 22E40. Partially supported by the NSF Grant DMS-8701840.