# NON-SELF-DUAL YANG-MILLS CONNECTIONS WITH NONZERO CHERN NUMBER 

LORENZO SADUN AND JAN SEGERT

We prove the existence of non-self-dual Yang-Mills connections on $S U(2)$ bundles over the standard four-sphere, specifically on all bundles with second Chern number not equal to $\pm 1$. A YangMills (YM) connection $A$ is a critical point of the YM action

$$
S(A)=\int_{S^{4}}|F|^{2} d \mathrm{Vol}=\int_{S^{4}}-\operatorname{Tr}(* F \wedge F),
$$

where $F$ is the curvature of the connection $A$ and $*$ is the Hodge dual. The YM equations $D * F=0$, where $D$ denotes the covariant exterior derivative, are the variational equations of this functional, and constitute a system of second-order PDE's in $A$. Absolute minima of the YM action, in addition to satisfying the YM equations, also satisfy a first-order system of PDE's, the (anti)self-duality equations $* F= \pm F$. We call a connection non-self-dual (NSD) if it is neither self-dual ( $* F=F$ ) nor anti-self-dual $(* F=-F)$, i.e., if it is not a minimum of the YM action.
(Anti) self-dual connections on $S^{4}$ have been well-understood for some time. The first nontrivial example, the BPST instanton [BPST], was found in 1975, and three years later all self-dual solutions on $S^{4}$ were classified [ADHM], not only for $S U(2)$ but for all classical groups. The study of self-dual $S U(2)$ connections on other four-manifolds led to spectacular progress in topology, including the discovery of fake $\mathbf{R}^{4}$ (see [FU] for an overview).

The study of NSD YM connections has proceeded much more slowly. While some examples of NSD YM connections on fourmanifolds are known [I, Ma1, Ma2, Ur, P], until recently NSD YM connections on $S U(2)$ bundles over standard $S^{4}$ proved elusive,

[^0]
[^0]:    Received by the editors April 3, 1990 and, in revised form, August 13, 1990.
    1980 Mathematics Subject Classification (1985 Revision). Primary 81E13; Secondary $34 \mathrm{~B} 15,53 \mathrm{C} 05,58 \mathrm{E} 30$.

    The first author is partially supported by NSF Grant DMS-8806731.
    The second author is partially supported by a Bantrell Fellowship and NSF Grant DMS-8801918.

