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For functions ƒ , bounded (and Lebesgue measurable) on a 
compact interval [a, b] of the real axis, the classical modulus of 
continuity (smoothness) may be introduced via 

(1) W A : ( / ^ ) o o : = = S UP ">*(ƒ>*><*)' 

using the kth local modulus of continuity 
œk{f9x,S) 
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It is well known that (1) as well as its LP-analogue (1 < p < oo) 
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serve as a measure of smoothness of functions in many fields of 
analysis. In particular, the moduli (1;2) often supply appro
priate bounds for the error of approximation processes, given via 
sequences of bounded (e.g., integral) operators on Lp . When deal
ing with approximation procedures of a discrete structure, how
ever, an estimation of Ü-errors (e.g., for Bernstein polynomi
als of bounded functions) versus cok{f, ô)p is not possible since, 
roughly speaking, cok(f, S)p represents a bounded (sublinear) 
functional on Lp, whereas point evaluation functionals cannot 
be bounded with regard to the Ü -metric, even when restricted to 
continuous functions. 

In this connection the authors offer the averaged or r-modulus 
of smoothness 
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