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A Riemannian (i.e., positive definite) metric on a compact man
ifold is called a Zoll metric if all of its geodesies are simply periodic 
with period In . The classic example of a Zoll surface is S with 
the standard metric gs. A number of years ago, Funk proposed 
the problem of finding all Zoll metrics on S which are close to 
gs. The underlying motivation of the present monograph is to 
consider a generalization of this problem of Funk to Lorentzian 
manifolds. 

A metric g on the «-dimensional manifold M is said to be 
Lorentzian if it has signature ( + , . . . , + , - ) at all points of M. 
One may denote the signature of (M, g) by referring to M as 
a (k + l)-dimensional manifold where k = n - 1. For exam
ple, studying cosmology in 2 + 1 dimensions may be thought 
of as investigating cosmological questions on three-dimensional 
Lorentzian manifolds. 

The Levi-Civita connection V and geodesies for a Lorentzian 
manifold (M, g) are defined in the same way as for a positive 
definite Riemannian manifold. In the Lorentzian case, there are 
three types of geodesies y: (a, b) -* M corresponding to g(y', / ) 
being always positive, negative, or zero. The null geodesies are the 
geodesies with g{y', / ) = 0. It is an interesting fact that, up to 
reparameterization, the null geodesies are invariant under confor
mai changes. Guillemin calls a metric g on a compact manifold 
M a Zollfrei metric if all of its null geodesies are periodic. One 
may think of (M, g) as cyclic because each point (i.e., event) of 
the model gets replicated a countable number of times. 


