BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 23, Number 2, October 1990 ©1990 American Mathematical Society 0273-0979/90 \$1.00 + \$.25 per page

Elementary geometry in hyperbolic space, by Werner Fenchel. De Gruyter Studies in Mathematics, vol. 11, Walter de Gruyter, Berlin, New York, 1989, xi+225 pp., \$69.95. ISBN 0-89925-493-4

To obtain a helpful overview of the material in hand it is appropriate to begin with a brief discussion of the Möbius group in *n*-dimensions. Detailed accounts have been given from different perspectives by Ahlfors [1], Beardon [2], and Wilker [5].

Let $\Sigma = \Sigma^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ be the unit *n*-sphere in \mathbb{R}^{n+1} , $n \ge 2$. An (n-1)-sphere $\gamma = \gamma^{n-1}$ on Σ is the section of Σ by an *n*-flat containing more than one point of Σ and each such (n-1)-sphere determines an involution $\gamma: \Sigma \to \Sigma$ called inversion in γ . This inversion fixes the points of γ and interchanges other points in pairs which are separated by γ and have the property that any two circles of Σ , which pass through one of the points and are perpendicular to γ , meet again at the other point. The group generated by the set of all inversions of Σ is the *n*-dimensional Möbius group \mathcal{M}_n . Further properties of \mathcal{M}_n can be inferred from the fact that it can also be defined as the group of bijections of Σ that preserves circles, or angles, or cross ratios, where a typical cross ratio of the four distinct points a, b, c, d belonging to Σ is the number (||a - b|| ||c - d||)/(||a - c|| ||b - d||).

Let $\Pi = \Pi^n = \mathbf{R}^n \cup \{\infty\}$. Stereographic projection from Σ to Π transfers the Möbius group \mathcal{M}_n to Π where it is natural to think of it as the group generated by reflections in (n-1)-flats and inversions in (n-1)-spheres. All the essential properties of the action of \mathcal{M}_n are preserved in the transfer to Π because stereographic projection is induced by an inversion one dimension higher. Thus Σ and Π provide useful alternative models for viewing inversive *n*-space from a Euclidean perspective; to enter into the full spirit of their equivalence one need only remember that an inversive *m*-sphere in Π , $1 \le m \le n-1$, can equally well mean a Euclidean *m*-sphere or a Euclidean *m*-flat augmented by the point ∞ . Since Σ^n and Π^n sit naturally in Π^{n+1} , we can perform extensions of their transformations and regard the copies of \mathcal{M}_n associated with them as conjugate subgroups of \mathcal{M}_{n+1} . The extension of a Möbius