Finally, we remark that a number of new graduate texts on measure theoretic probability are now being written, soon to appear. The prior appearance of Dudley's book is certain to define a new standard of rigor and completeness for the decade of the 1990s.

References

[Be] J. Bernoulli, Ars conjectandi, Basel, 1713.
[Bo] N. Bourbaki, Integration (4 vols.), Hermann, Paris, 1952-63.
[D] J. Doob, Probability in function space, Bull. Amer. Math. Soc. 53 (1947), 17-30.
[H] P. R. Halmos, Measure theory, Van Nostrand, New York, 1950.
[K] A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, SpringerVerlag, New York, 1933.
[M] A. deMoivre, Approximatio ad summam terminorum binomii $(a+b)^{n}$ in seriem expansi (original 1733), The Doctrine of Chances, 3d ed., Chelsea, New York, reprinted 1967.
[S-K] I. Segal and R. Kunze, Integrals and operators, McGraw-Hill, New York, 1968.
[W] N. Wiener, Differential space, J. Math. Phys. MIT 2 (1923), 131-174.

Mark A. Pinsky
Northwestern University

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 23, Number 2, October 1990
(C) 1990 American Mathematical Society
$0273-0979 / 90 \$ 1.00+\$.25$ per page
Noncommutative Noetherian rings, by J. C. McConnell and J. C. Robson. Pure and Applied Mathematics. Wiley Interscience, John Wiley and Sons, New York, 1987, xiv+596 pp., \$138.00. ISBN 0-471-91550-5

A ring R is said to be right Noetherian if every right ideal of R is finitely generated. There are two equivalent conditions: The ascending chain condition (every ascending chain of right ideals becomes stationary) and the maximal condition (every nonempty set of right ideals contains maximal elements). It has been 100 years since Hilbert [H] proved his basis theorem, which nowadays is stated in the following form: If R is a Noetherian ring, so is $R[x]$, the polynomial ring over R in one variable.

Hilbert used his result to conclude that certain rings of invariants were finitely generated. The name "Noetherian" honors

